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PREFACE 
 
 
Financial markets offer the ideal testing ground for new statistical ideas. The fact 
that there is a large number of participants, with divergent anticipations and 
interests, simultaneously present in these markets, leads to unpredictable behaviour. 
In the last decade, financial institutions have greatly increased their holdings of 
trading assets, such as equities, bonds, interest rate and equity derivatives, foreign 
exchange and commodity positions. Their motive in this has been to make trading 
profits and to hedge exposures elsewhere in their portfolios. The increase in the 
relative importance of market risk in bank portfolios has obliged regulators to 
reconsider the system of capital requirements agreed in the 1988 Basle Capital 
Accord. The common framework for treating risk laid down by the 1988 Accord 
was designed primarily for limiting credit risk and had clear drawbacks in its 
treatment of market risk. These problems led the European Commission and the 
Basle Supervisors' Committee to study alternative ways of treating trading book 
positions. The European Commission's Capital Adequacy Directive (CAD), agreed 
on in 1993 and introduced at the beginning of 1996, established EU minimum 
capital requirements for the trading books of banks and securities firms. The Basle 
Committee proposals were summarized in a paper issued in January 1996 entitled 
“Overview of the Amendment of the Capital Accord to Incorporate Market Risks“. 
 
One of the most significant advances in the past two decades in the field of 
measuring and managing market risk has been the development and the ever-
growing use of Value at Risk (VaR) methodology for measuring risks. VaR 
methodology was specifically developed for measuring and managing risk of 
portfolios across the entire financial institution. VaR represents a method of 
assessing risk using standard statistics, commonly used in technical fields. VaR 
measures the worst expected loss over a given horizon under normal market 
conditions at a given confidence level. Due to the Basel Committee’s approval for 
using internally developed VaR models for measuring market risk in 1996, a large 
number of different approaches to calculating VaR figures have been developed. 
The three main approaches to calculating VaR estimates are: the Parametric, the 
Nonparametric and the Semi-parametric (hybrid) approach. Each of these 
approaches has its own advantages and disadvantages, and none of them is superior 
to others in all the circumstances and markets. 
 
The main advantage of VaR as a risk measure is that it is very simple and can be 
used to summarize the risks of individual positions, and/or the risk of a large 
internationally diversified portfolio. Although there is an abundance of articles and 
books regarding VaR and market risk measurement and management, all of the 
existing models are developed and tested on mature, developed and liquid markets. 
Theoretical investigation and quantitative testing of VaR models in other, less 
developed or developing financial market is, at best, scarce. This is exactly the area 
that this book aims to fill. Since most of the transition countries are all exposed to 
very similar processes of strong inflow of foreign direct and portfolio investments, 



 

and offer possibilities of huge profits for investors, these countries represent a very 
interesting opportunity for foreign and domestic banks, investment funds, insurance 
companies and other institutional investors. Banks and investment funds when 
investing in these financial markets employ the same risk measurement models for 
measuring market risk and forming of provision as they do in the developed 
markets.  
 
When using VaR models, which are created and suited for developed and liquid 
markets, in these, developing markets some important questions arise: Do the VaR 
models, developed and tested in the developed and liquid financial markets, apply to 
the volatile and shallow financial markets of transition countries? Do the commonly 
used VaR models adequately capture market risk of these markets or do they only 
give a false sense of security? 
 
Employing VaR models in forming bank’s provisions that are not suited to 
developing markets can have serious consequences and can result in big losses in 
portfolio that could pass undetected by the employed risk measurement models, 
leaving thus the financial institutions unprepared. Banks could also be penalized by 
the regulators, via higher scaling factor when forming their market risk provisions, 
due to the use of a faulty risk measurement model. 
 
This book provides a cutting-edge overview of VaR estimation. Given the size and 
rate of growth of VaR literature, it is virtually impossible to cover this field 
completely and comprehensively. Within the focus of this book, i.e. measuring 
market risk, the coverage of the literature provided in this book is fairly extensive, 
but can only provide, a rather subjective view of the main highlights of the risk 
literature.  
 
The book is intended for two main audiences. The first group consists of 
practicioners in risk measurement and management; people developing, testing 
(backtesting) and using VaR measurement. The second, consists of students in 
MBA, MA, MSc and professional programmes in the field of quantitative finance, 
risk measurement and related subject, where this book can be used as a textbook. 
The understanding of this book requires basic knowledge of statistics (especially 
distribution functions and regression analysis), mathematics, finance (especially 
financial engineering and derivatives theory) and computing. I presume the reader is 
familiar with the assumptions underlying the use of ordinary least squares, concepts 
of correlation and covariance. It is presumed that the reader is familiar with the use 
of t-tests and F-tests in a regression framework. The terms such as mean square 
error, significance level and unbiased estimate are used without explaining their 
meaning. Most academics and practicioners should have no trouble with the text, but 
students should first master basic econometrics and finance. To reexamine and test 
the findings from this book it is necessary to have access to software packages, such 
as MATLAB, GAUSS, STATA, SAS, RATS or EVIEWS.  
 



 

It is my hope that this research will give banks and other investors operating in the 
financial markets of transition countries an inside view into the true nature of risk in 
these markets and help them in developing in-house VaR models. With the selection 
of a correct VaR model in forming of capital requirements, financial institutions can 
be protected from unexpected market losses. Futhermore they can save considerable 
amounts of money by forming lower market risk provisions than required under the 
Basel standardized approach, when the market allows it. It is my desire that this 
book and research into market risk measurement and modelling will inspire further 
research of this and other related fields. 
 
The book is divided in two parts - the chapters discussing the nature of risk, 
regulatory framework behind risk measurement and management as well as risk 
measurement methods and approaches, and the empirical investigation on the 
implementation and performance of VaR models in the turbulent and illiquid stock 
markets of transition countries. 
 
The book is composed of six chapters. The first chapter of the book serves as an 
introduction to the nature and theory of financial risk. The basic notions in risk 
management are presented as well as the explanation and description of the basic 
forms of risks encountered in banking. The second chapter presents the development 
of current Basel rules for measuring and managing market risk in banks. It also 
presents the two available approaches of calculating provisions for market risk. The 
main advantages and disadvantages of both the standardized and internal approach 
are analysed and discussed. This part of the book concludes with an overview of risk 
measurement and management importance, characteristics and practices in the 
banking sector of transition countries. The third chapter deals with the Value at Risk 
(VaR) as a method of calculating capital charge for market risk. The definition, 
historical development and the rationale behind Value at Risk are presented. 
Possible opportunities for using Value at Risk method beyond market risk 
measurement are also presented and discussed. The third chapter concludes with the 
presentation of the main advantages and disadvantages of Value at Risk as a method 
of measuring market risk. In the fourth chapter, the theoretical basis for the 
understanding and development of Value at Risk models is presented. This chapter 
begins with the explanation of time series models used in financial engineering and 
risk management. Special attention is given to generalized autoregressive 
heteroskedasticity (GARCH) models. The fourth chapter continues with the 
theoretical explanation and rationale of parametric and nonparametric models to 
calculating VaR. In the last part of this chapter a family of semi parametric VaR 
models is presented. In this part of the book the author develops a new semi 
parametric VaR model, called Hybrid Historical simulation (HHS). Fifth chapter 
deals with backtesting of the VaR forecasts and introduces the best-known and 
newest methods of backtesting and evaluating VaR estimates. Advantages and 
disadvantages of each backtesting procedure are presented and discussed in detail. 
Chapter six represents an empirical analysis of selected VaR models presented and 
discussed in this book. The summary of empirical research into VaR is presented. 
Characteristics of analysed stock indexes from transition countries are presented and 



 

obtained results are discussed. Data, methodology, as well as VaR and volatility 
forecasting models used in the testing of stock indexes are explained in detail. The 
sixth chapter concludes with the actual backtesting across different criteria of the 
selected VaR models as well as the new VaR model presented in Chapter 4. 
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1 INTRODUCTION 
 
 
“Randomness stems from our incomplete knowledge of reality, from the lack of 
information which forbids a perfect prediction of the future: randomness arises from 
complexity, from the fact that causes are diverse, that tiny perturbations may result 
in large effects. For over a century now, Science has abandoned Laplace's 
deterministic vision, and has fully accepted the task of deciphering randomness and 
inventing adequate tools for its description. The surprise is that, after all, 
randomness has many facets and that there are many levels to uncertainty, but, 
above all, that a new form of predictability appears, which is no longer 
deterministic but statistical.” 
 
                 (Bouchaud, Potters, 2001) 
 
 
Over the past 20 years, many corporations have found it less costly to raise money 
from the public (by issuing bonds) than to borrow directly from banks. Banks have 
found themselves competing more and more fiercely, reducing their profit 
margins, and lending in larger sizes, longer maturities, and to customers of lower 
credit quality. Customers, on their part, are demanding more sophisticated and 
complicated ways to finance their activities, to hedge their financial risks, and to 
invest their liquid assets. In some cases, they are simply looking for ways to reduce 
their risk exposure. In other instances, they are willing to assume additional risk, if 
they are properly compensated for it, in order to enhance the yield of their 
portfolio. 
 
Banks are, therefore, increasingly engaged in what might be called "risk shifting" 
activities. These activities demand increasing expertise and know-how in 
controlling and pricing the risks that banks manage in the financial market. As the 
banking industry has evolved, the managerial emphasis has shifted away from 
considerations of profit and maturity intermediation (usually measured in terms of 
the spread between the interest paid on loans and the cost of funding) toward risk 
intermediation. Risk intermediation implies a consideration of both the profits and 
the risks associated with banking activities. It is no longer sufficient to charge a 
high interest rate on a loan; the relevant question is whether the interest charged 
compensates the bank appropriately for the risk that it has assumed. The change 
in emphasis from simplistic profit-oriented management to risk/return 
management can also be seen in non-bank corporations. Many major corporations 
are now engaged in active risk management. Of course, risk was always a major 
consideration in deciding whether to take advantage of investment opportunities. 
However, rejecting projects because they seem to be risky can lead companies to 
reject investment opportunities that in fact offer excellent returns. The real problem 
is how to quantify risk and price it appropriately. 
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1.1 Role of risk measurement and management in modern banking 
 
Financial institutions are specialists in risk management. Their primary expertise 
stems from their ability to both measure and manage risk exposure on their own 
behalf and on behalf of their clients - either through the evolution of financial 
market products to shift risks or through the absorption of their clients' risk onto 
their own balance sheets. Because financial institutions are risk intermediaries, they 
maintain an inventory of risk that must be measured carefully so as to ensure 
that the risk exposure does not threaten the intermediary's solvency. Thus, 
accurate measurement of risk is an essential first step for proper risk management, 
and financial intermediaries, because of the nature of their business, tend to be 
leading developers of new risk measurement techniques. In the past, many of mod-
els for measuring risks were internal models, developed in-house by financial 
institutions. In the banking industry there has been a significant widening of the 
focus, from the traditional qualitative risk assessment toward a quantitative 
measurement of risks, due to evolving risk practices and central bank regulation. 
Risk measurement requires capturing both the source of the risk and the magnitude 
of potential adverse effect on profitability, where profitability refers to both 
accounting and mark-to-market measures. Risk can be broadly defined as hazard, a 
chance of bad consequences, loss or exposure to mischance. Risk can also be 
defined as any event or action that may adversely affect an organisation's ability to 
achieve its objectives and execute it strategies, or the quantifiable likelihood of loss 
or less-than-expected returns (McNeil, Frey, Embrechts, 2005, p.1). Financial risk 
can be defined as a probability of occurrence of unwanted financial results and 
consequences. Bessis (2002) defines risk as uncertainties resulting in adverse 
variations of profitability or in losses (Bessis, 2002, p. 11). In the field of finance it 
is usual to distinguish between market, credit, liquidity, operational and legal risks. 
All these risks could generate losses that would be more or less prejudicial for an 
institution or for a single investor. Moreover, even if these definitions of risk given 
by (McNeil, Frey, Embrechts, 2005) and Bessis (2002) are very close to the 
definition of uncertainty it is necessary to distinguish between these two concepts. 
Uncertainty corresponds to a situation where the decisions of every economic agent 
depend on exogenous factors whose states could not be predicted with certainty 
(Meyfredi, 2004, p. 1). Only when uncertainty could be quantified, i.e. when it is 
possible to assign a probability distribution, it is possible to speak about risk. 
Finally, dealing with risk requires answers to two questions: How much can a bank 
lose? and What is the probability that this loss will occur? Risk constitutes an 
important field of research that has been of increasing interest in the last ten years. 
There are at least two reasons for handling risk. Firstly, there is a necessity for the 
decision-maker to act with full knowledge of the facts. Secondly, risk must be 
limited and also managed. A bad assessment could lead to bankruptcy or even to a 
systemic crisis. Recent history is full of outstanding examples: the stock market 
crash of ‘87, Barings Bank, Orange County, Daiwa and LTCM are some typical 
cases. 
 
 



Chapter 1 Introduction   3 

 

1.2 Financial risks in banking 
 
 
1.2.1 Types of financial risks 
 
Firms are exposed to various types of risk, which can broadly be classified into 
business and nonbusiness risks. Business risks are those that the corporation 
willingly assumes to create a competitive advantage and add value for shareholders. 
Business, or operating, risk pertains to the product market in which a firm operates 
and includes technological innovations, product design and marketing. Operating 
leverage, involving the degree of fixed versus variable costs, is also largely a choice 
variable. Judicious exposure to business risk is a core competency of all business 
activity. Business activities also include exposure to macroeconomic risks, which 
result from economic cycles, or fluctuations in incomes and monetary policies.  
 
Other risks, over which firms have no control, can be grouped into nonbusiness 
risks. These include strategic risks, which result from fundamental shifts in the 
economy or political environment. These risks are difficult to hedge, except by 
diversifying across business lines and countries. Finally, financial risks can be 
defined as those that relate to possible losses in financial markets, such as losses due 
to interest rate movements or defaults on financial obligations. Exposure to financial 
risks can be optimised carefully so that firms can concentrate on what they do 
best - manage exposure to business risks (Jorion, 2001, p. 4).  
 
In contrast to industrial corporations, the primary function of financial institutions is 
to manage financial risks actively. The purpose of financial institutions is to assume, 
intermediate, or advise on financial risks. These institutions realize that they must 
measure sources of risk as precisely as possible in order to control and properly 
price risks. Understanding risk means that financial managers can consciously plan 
for the consequences of adverse outcomes and, by so doing, be better prepared for 
the inevitable uncertainty. 
 
Due to the growing variety and complexity of financial risks in modern banking 
industry, a large number of classifications and types of financial risks can be found 
in literature. One of the widely used classifications of financial risks is presented in 
figure 1. 
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Figure 1– Schematic presentation, by categories, of risk exposure in a bank 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Source:  Crouhy Michael, Galai Dan, Mark Robert: Risk Management. New York: McGraw-

Hill, 2001. p. 39. 
 
This, often used, classification is somewhat simplistic since every financial 
institution is exposed to numerous other risks. In the reminder of this chapter the 
most important risks in financial industry (Jorion, 2001, p. 15, Saunders, Cornett, 
2003, p.138, McNeil, Frey, Embrechts, 2005, p. 2-3) will be explained in greater 
detail:  

• credit risk,  
• market risk (position risk, interest rate risk, foreign exchange risk, 

commodity risk), 
• operational risk,  
• liquidity risk,  
• country risk,  
• performance risk,  
• solvency risk and  
• model risk.  
 
 

1.2.2 Credit risk  
 
Credit risk is the first of all risks in terms of importance for a bank. Default risk, a 
major source of loss, is the risk that customers default, meaning that they fail to 
comply with their obligations to service debt. Default triggers a total or partial loss 
of any amount lent to the counterparty. Credit risk is also the risk of a decline in the 
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credit standing of an obligor of the issuer of a bond or stock (McNeil, Frey, 
Embrechts, 2005, p. 326). Such deterioration does not imply default, but it does 
imply that the probability of default increases. In the market universe, a deterioration 
of the credit standing of a borrower does materialize into a loss because it triggers an 
upward move of the required market yield to compensate the higher risk and triggers 
a value decline. Issuer risk designates the obligors' credit risk, to make it distinct 
from the specific risk of a particular issue, among several of the same issuer, 
depending on the nature of the instrument and its credit mitigants (seniority level 
and guarantees).  
 
Credit risk is critical since the default of a small number of important customers 
can generate large losses, potentially leading to insolvency of the bank. There are 
various default events, such as: delay in payment obligations, restructuring of debt 
obligations due to a major deterioration of the credit standing of the borrower and 
bankruptcies. Simple delinquencies, or payment delays, do not turn out as plain 
defaults, with a durable inability of lenders to face debt obligations. Many are 
resolved within a short period. Restructuring is very close to default because it 
results from the view that the borrower will not be able to pay his obligations 
unless its funding structure changes. Plain defaults imply that the non-payment 
will be permanent (Jorion, 2001, p. 16). Bankruptcies, possibly liquidation of the 
firm or merging with an acquiring firm, are possible outcomes. They all trigger 
significant losses. Default means any situation other than a simple delinquency. 
Credit risk is difficult to quantify on an ex ante basis, since it is necessary to 
assess the likelihood of a default event and of the recoveries under default, which 
are context-dependent. In addition, banking portfolios benefit from 
diversification effects, which are much more difficult to capture because of the 
scarcity of data on interdependencies between default events of different 
borrowers. 
 
Financial markets value the credit risk of issuers and borrowers through 
pricing. Unlike loans, the credit risk of traded debts is also indicated by the 
specialized agencies' ratings (the most famous ones are: Moody's, Standard & 
Poor's (S&P), Fitch etc.), assessing the quality of public debt issues, or through 
changes of the value of their stocks. Credit risk is also visible through credit 
spreads, the add-ons to the risk-free rate defining the required market risk yield on 
debts. The capability of trading market assets mitigates the credit risk since there 
is no need to hold these securities until the deterioration of credit risk materializes 
into effective losses. If the credit standing of the obligor declines, it is still possible 
to sell these instruments in the market at a lower value. The loss due to credit risk 
depends on the value of these instruments and their liquidity. If the default is 
unexpected, the loss is the difference between the pre- and post-default prices. The 
faculty of trading the assets limits the loss if sale occurs before default and the 
selling price depends on the market liquidity. Therefore, there is a clear interaction 
between credit risk and market risk. For over-the-counter instruments, such as 
derivatives (e.g. swaps and options), whose development has been spectacular in the 
recent period, sale is not readily feasible and the bank faces the risk of losing the 
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value of such instruments when it is positive. Since this value varies constantly with 
the market parameters, credit risk changes with market movements during the entire 
residual life of the instrument.  
 
Even though procedures for dealing with credit risk have existed since banks started 
lending, credit risk measurement raises several issues (Bessis, 2002, p. 14). The 
major credit risk components are exposure, likelihood of default, or of a 
deterioration of the credit standing, and the recoveries percentage under default. 
Scarcity of data makes the assessment of these components a real challenge for 
practitioners. 
Ratings are traditional measures of the credit quality of debt. Some major features of 
ratings systems are (Bessis, 2002, p. 14-15): 

• Ratings are ordinal or relative measures of risk rather than cardinal or absolute 
measures, such as default probability. 

• External ratings of rating agencies apply to debt issues rather than issuers 
because various debt issues from the same issuer have different risks 
depending on seniority level and guarantees. Detailed rating scales of agencies 
have 20 levels, ignoring the near default rating levels. 

• By contrast, an issuer's rating characterizes only the default probability of the 
issuer. 

• Banks use internal rating scales because most of their borrowers do not have 
publicly rated debt issues. Internal rating scales of banks are customized to 
banks' requirements, and usually characterize both borrower's risk and 
facility's risk. 

• There are various types of ratings. Ratings characterize sovereign risk, the risk 
of country debt and the risk of the local currency. Ratings are also either short-
term or long-term. There are various types of country-related ratings: 
sovereign ratings of government sponsored borrowers; ratings of currencies; 
ratings of foreign currencies held locally; ratings of transfer risk, the risk of 
being unable to transfer cash out of the country. 

• Because ratings are ordinal measures of credit risk, they are not sufficient to 
value credit risk. 

 
Ratings apply only to individual debts of borrowers, and they do not address the 
bank's portfolio risk, which benefits from diversification effects. Portfolio models 
show that portfolio risk varies across banks depending on the number of borrowers, 
the discrepancies in size between exposures and the extent of diversification among 
types of borrowers, industries and countries. The portfolio credit risk is critical in 
terms of potential losses and, therefore, for finding out how much capital is required 
to absorb such losses. Modelling default probability directly with credit risk models 
remained a major challenge, not addressed until recent years. A second challenge of 
credit risk measurement is capturing portfolio effects. Due to the scarcity of data in 
the case of credit risk, quantifying the diversification effect is a formidable 
challenge. It requires assessing the joint likelihood of default for any pair of 
borrowers, which gets higher if their individual risks correlate. Given its importance 
for banks, it is not surprising that banks, regulators and model designers made a lot 
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of effort to better identify the relevant inputs for valuing credit risk and model 
diversification effects with portfolio models.  
 
Under the Basel II framework the Basel Committee permits banks a choice between 
two broad methodologies for calculating their capital requirements for credit risk. 
One alternative is to measure credit risk in a standardised manner, supported by 
external credit assessments. The alternative methodology, which is subject to the 
explicit approval of the bank’s supervisor, allows banks to use their internal rating 
systems for credit risk. 
 
Banks that have received supervisory approval to use the Internal Ratings-Based 
(IRB) approach may rely on their own internal estimates of risk components in 
determining the capital requirement for a given exposure. The risk components 
include measures of the probability of default (PD), loss given default (LGD), the 
exposure at default (EAD), and effective maturity (M). In some cases, banks may be 
required to use a supervisory value as opposed to an internal estimate for one or 
more of the risk components. The IRB approach is based on measures of unexpected 
losses (UL) and expected losses (EL). The risk-weight functions produce capital 
requirements for the UL portion (Basel Committee on Banking Supervision, 2004a, 
p. 48). 
 
 
1.2.3 Market risk 
 
Market risk is the risk of adverse deviations of the mark-to-market value of the 
trading portfolio, due to market movements, during the period required to 
liquidate the transactions (Bessis, 2002, p. 18). Market risk can also be defined as a 
result of changing market prices of securities in capital markets. The term market 
risk refers to a broad category of financial risks. Interest rate risk, foreign exchange 
risk, position risk and commodity risk are all considered as market risk. On the other 
hand, many authors (e.g. Hull, White, 1998b, Marrison, 2002, Dowd, 2002, Bessis, 
2002) under the term market risk consider only the risk of price changes of 
securities, currencies or commodities (position risk) and deal with interest rate risk 
separately, because of its importance. Following the same methodology, author in 
this book considers market risk in the narrower sense of the word, as the risk of 
price changes of a bank portfolio. 
 
Market risk can take two forms (Jorion, 2001, p.15-16): relative market risk – risk 
measured relative to a specific benchmark index resulting in a tracking error 
(deviation from the benchmark index) and absolute risk – risk measured in a chosen 
currency, reflecting the volatility of total returns. Market risk arises from movement 
in the underlying risk factors of a particular security, such as: equity prices, interest 
rates, exchange rates and commodity prices. A single factor or a combination of 
these risk factors affects the value of the bank’s portfolio. Market risk exposure of a 
bank’s portfolio is determined by both the volatility of the underlying risk factors as 
well as the sensitivity of the bank’s portfolio to movements of these risk factors. 
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Market risk can also be classified into directional and nondirectional risks. 
Directional risks involve exposures to the direction of movements in financial 
variables. These exposures are measured by linear approximations such as beta for 
exposure to stock market movements, duration for exposures to interest rate, and 
delta for exposure of options to the underlying asset price. Nondirectional risks 
involve the remaining risks, which consist of nonlinear exposures and exposures to 
hedge positions or to volatilities. Second order or quadratic exposures are measured 
by convexity when dealing with interest rates and gamma when dealing with 
options. Basis risk is created from unanticipated movements in relative prices of 
assets in a hedged position, such as futures or interest rate swaps. Volatility risk 
measures exposure to movements in the actual or implied volatility. 
 
The period of liquidation is critical to assess adverse deviations. If it gets longer, so 
do the deviations from the current market value. Earnings for the market portfolio 
are profit and loss arising from transactions. The return between two dates is the 
variation of the market value. Any decline in value results in a market loss. The 
potential worst-case loss is higher when the holding period gets longer because 
market volatility tends to increase over longer horizons. However, it is possible to 
liquidate tradable instruments or to hedge their future changes of value at any 
time. This is the rationale for limiting market risk to the liquidation period. In 
general, the liquidation period varies with the type of instruments. It could be short 
(1 day) for foreign exchange or much longer for exotic derivatives. The Basel 
Committee provides rules to set the liquidation period. Committee uses as 
reference a 10-day liquidation period and imposes a multiple over banks' 
internal measures of market value potential losses. Liquidation involves asset 
and market liquidity risks. Price volatility is not the same in high-liquidity and 
poor-liquidity situations. When liquidity is high, the adverse deviations of prices 
are much lower than in a poor-liquidity environment, within a given horizon. 
Pure market risk, generated by changes of market parameters, differs from 
market liquidity risk. The liquidity issue becomes critical in developing markets 
such as those of transition countries, because prices in developing markets often 
diverge considerably from a theoretical fair value. 
 
Market risk does not refer to market losses due to causes other than market 
movements, loosely defined as inclusive of liquidity risk. Any deficiency in the 
monitoring of the market portfolio might result in market values deviating by any 
magnitude until liquidation finally occurs. In the meantime, the potential deviations 
can exceed by far any deviation that could occur within a short liquidation period. 
But this risk is considered to be an operational risk, not a market risk. 
 
In order to define the potential adverse deviation, a methodology is required to 
identify what could be a maximum adverse deviation of the portfolio market 
value. Controlling market risk means keeping the variations of the value of a 
given portfolio within given boundary values through actions on limits, which are 
upper bounds imposed on risks, and hedging for isolating the portfolio from the 
uncontrollable market movements. 
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1.2.4 Operational risk 
 
Deregulation and globalisation of financial services, together with the growing 
sophistication of financial technology, are making the activities of banks and thus 
their risk profiles (i.e. the level of risk across a firm’s activities and/or risk 
categories) more complex. Developing banking practices suggest that risks other 
than credit, interest rate and market risk can be substantial. Examples of these new 
and growing risks faced by banks include (Basel Committee on Banking 
Supervision, 2003, p. 1): 

• If not properly controlled, the greater use of more highly automated 
technology has the potential to transform risks from manual processing errors 
to system failure risks, as greater reliance is placed on globally integrated 
systems; 

• Growth of e-commerce brings with it potential risks (e.g., internal and external 
fraud and system security issues) that are not yet fully understood; 

• Large-scale acquisitions, mergers, de-mergers and consolidations test the 
viability of new or newly integrated systems; 

• The emergence of banks acting as large-volume service providers creates the 
need for continual maintenance of high-grade internal controls and back-up 
systems; 

• Banks may engage in risk mitigation techniques (e.g., collateral, credit 
derivatives, netting arrangements and asset securitisations) to optimise their 
exposure to market risk and credit risk, which in turn may produce other forms 
of risk (e.g. legal risk) and 

• Growing use of outsourcing arrangements and the participation in clearing and 
settlement systems can mitigate some risks but can also present significant 
risks to banks. 

 
The diverse set of these risks can be grouped under the heading of operational risk, 
which the Basel Committee defines as the risk of loss resulting from inadequate or 
failed internal processes, people and systems or from external events. The definition 
includes legal risk but excludes strategic and reputation risk. 
 
Operational risk events that can result in substantial losses for a bank include (Basel 
Committee on Banking Supervision, 2003, p. 2): 

• Internal fraud (e.g. intentional misreporting of positions, employee theft, 
and insider trading on an employee’s own account). 

• External fraud (e.g. robbery, forgery, cheque kiting and damage from 
computer hacking). 

• Employment practices and workplace safety (e.g. workers compensation 
claims, violation of employee health and safety rules, organised labour 
activities, discrimination claims and general liability). 

• Clients, products and business practice (e.g. fiduciary breaches, misuse of 
confidential customer information, improper trading activities on the bank’s 
account, money laundering and sale of unauthorised products). 
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• Damage to physical assets (e.g. terrorism, vandalism, earthquakes, fires and 
floods). 

• Business disruption and system failures (e.g. hardware and software failures, 
telecommunication problems and utility outages). 

• Execution, delivery and process management (e.g. data entry errors, 
collateral management failures, incomplete legal documentation, 
unapproved access given to client accounts, non-client counterparty 
misperformance, and vendor disputes). 

 
Management of specific operational risks is not a new practice; it has always been 
important for banks to try to prevent fraud, maintain the integrity of internal 
controls, reduce errors in transaction processing, etc (Basel Committee on Banking 
Supervision, 2003, p. 2-3). Relatively new is the view of operational risk 
management as a comprehensive practice comparable to the management of credit 
and market risk in principle, if not always in form. In the past, banks relied almost 
exclusively upon internal control mechanisms within business lines, supplemented 
by the audit function, to manage operational risk. While these remain important, 
recently there has been an emergence of specific structures and processes aimed at 
managing operational risk. In this regard, an increasing number of organisations 
have concluded that an operational risk management programme provides for bank 
safety and soundness, and are therefore making progress in addressing operational 
risk as a distinct class of risk similar to their treatment of credit and market risk.  
 
In developing sound practices, the Basel Committee has drawn upon its existing 
work on the management of other significant banking risks, such as credit risk, 
interest rate risk and liquidity risk (Basel Committee on Banking Supervision, 2003, 
p. 3). Nevertheless, it is clear that operational risk differs from other banking risks in 
that it is typically not directly taken in return for an expected reward, but exists in 
the natural course of corporate activity, and that this affects the risk management 
process. Under Basel II capital accord framework there are three general methods 
for calculating operational risk capital requirements (Basel Committee on Banking 
Supervision, 2004, p. 137):  

1) Basic Indicator Approach; 
2) Standardised Approach and  
3) Advanced Measurement Approach. 

 
Internationally active banks and banks with significant operational risk exposures 
are expected to use an approach that is more sophisticated than the Basic Indicator 
Approach and that is appropriate for the risk profile of the institution. A bank is 
permitted to use the Basic Indicator or Standardised Approach for some parts of its 
operations and an Advanced Measurement Approach for others provided certain 
minimum criteria are met (Basel Committee on Banking Supervision, 2004, p. 137). 
Banks using the Basic Indicator Approach must hold capital for operational risk 
equal to the average over the previous three years of a fixed percentage of positive 
annual gross income. Figures for any year in which annual gross income is negative 
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or zero should be excluded from both the numerator and denominator when 
calculating the average (Basel Committee on Banking Supervision, 2004, p. 137). 
 
In the Standardised Approach, banks’ activities are divided into eight business lines: 
corporate finance, trading & sales, retail banking, commercial banking, payment & 
settlement, agency services, asset management, and retail brokerage. Within each 
business line, gross income is a broad indicator that serves as a proxy for the scale of 
business operations and thus the likely scale of operational risk exposure within each 
of these business lines. The capital charge for each business line is calculated by 
multiplying gross income by a factor (beta) assigned to that business line. Beta 
serves as a proxy for the industry-wide relationship between the operational risk loss 
experience for a given business line and the aggregate level of gross income for that 
business line. In the Standardised Approach gross income is measured for each 
business line, not the whole institution, i.e. in corporate finance, the indicator is the 
gross income generated in the corporate finance business line. The total capital 
charge is calculated as the three-year average of the simple summation of the 
regulatory capital charges across each of the business lines in each year. In any 
given year, negative capital charges (resulting from negative gross income) in any 
business line may offset positive capital charges in other business lines without 
limit. However, where the aggregate capital charge across all business lines within a 
given year is negative, then the input to the numerator for that year is zero. (Basel 
Committee on Banking Supervision, 2004, p. 139-140). 
 
Under the Advanced Measurement Approach, the regulatory capital requirement 
equals the risk measure generated by the bank’s internal operational risk 
measurement system using the quantitative and qualitative criteria for the Advanced 
Measurement Approach. The board of directors and senior management of each 
subsidiary are responsible for conducting their own assessment of the subsidiary’s 
operational risks and controls and ensuring the subsidiary is adequately capitalised 
in respect of those risks (Basel Committee on Banking Supervision, 2004, p. 140-
141). 
 
 
1.2.5 Liquidity risk 
 
Liquidity, or the ability to fund increases in assets and meet obligations as they 
come due, is crucial to the ongoing viability of any banking organisation. Therefore, 
managing liquidity is among the most important activities conducted by banks. 
Sound liquidity management can reduce the probability of serious problems. Indeed, 
the importance of liquidity transcends the individual bank, since a liquidity shortfall 
at a single institution can have system-wide repercussions. For this reason, the 
analysis of liquidity requires bank management not only to measure the liquidity 
position of the bank on an ongoing basis but also to examine how funding 
requirements are likely to evolve under various scenarios, including adverse 
conditions. In its work on the supervision of liquidity, the Basel Committee has 
focused on developing a greater understanding of the way in which banks manage 
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their liquidity on a global, consolidated basis (Basel Committee on Banking 
Supervision, 2000, p. 1). Recent technological and financial innovations have 
provided banks with new ways of funding their activities and managing their 
liquidity. In addition, a declining ability to rely on core deposits, increased reliance 
on wholesale funds, and recent turmoil in financial markets globally have changed 
the way banks view liquidity. All of these changes have also resulted in new 
challenges for banks. 
 
Banks’ management should set limits to ensure adequate liquidity and supervisors 
should review these limits. Limits could be set, for example, on the following (Basel 
Committee on Banking Supervision, 2000, p. 5): 

• The cumulative cashflow mismatches (i.e. the cumulative net funding 
requirement as a percentage of total liabilities) over particular periods – next 
day, next five days, next month. These mismatches should be calculated by 
taking a conservative view of marketability of liquid assets, with a discount to 
cover price volatility and any drop in price in the event of a forced sale, and 
should include likely outflows as a result of drawdown of commitments etc. 

• Liquid assets as a percentage of short term liabilities. Again, there should be a 
discount to reflect price volatility. The assets included in this category should 
only be those that are highly liquid – i.e. only those in which there is judged to 
be a ready market even in periods of stress. 

 
Since a bank’s future liquidity position will be affected by factors that cannot always 
be forecast with precision, assumptions need to be reviewed frequently to determine 
their continuing validity, especially given the rapidity of change in banking markets. 
The total number of major assumptions to be made, however, is fairly limited and 
consists of four broad categories: assets, liabilities, off-balance-sheet activities, and 
other (Basel Committee on Banking Supervision, 2000, p. 9). 
 

1.2.5.1 Assets 
 
Assumptions about a bank’s future stock of assets include their potential 
marketability and use as collateral which could increase cash inflows, the extent to 
which assets will be originated and sold through asset securitisation programs, and 
the extent to which maturing assets will be renewed, and new assets acquired. In 
some countries, supervisors have observed a trend of relying more heavily on a 
stock of liquid assets (a liquidity warehouse) in order to offset greater uncertainty 
about liability holder behaviour. Determining the level of a bank’s potential assets 
involves answering three questions (Basel Committee on Banking Supervision, 
2000, p. 9): 

• what proportion of maturing assets will a bank be able and willing to roll over 
or renew? 
• what is the expected level of new loan requests that will be approved? 
• what is the expected level of drawdowns of commitments to lend that a bank 

will need to fund?  
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These commitments may take the form of: committed commercial lines without 
material adverse change (MAC) clauses and covenants, which a bank may not be 
legally able to turn away even if the borrower’s financial condition has deteriorated; 
committed commercial lines with MAC clauses which some customers could draw 
down in crisis scenarios; and other commercial and consumer credit lines. 
 
In estimating its normal funding needs, some banks use historical patterns of roll-
overs, draw-downs and new requests for loans; others conduct a statistical analysis 
taking account of seasonal and other effects believed to determine loan demand 
(e.g., for consumer loans). Alternatively, a bank may make judgmental business 
projections, or undertake a customer-by-customer assessment for its larger 
customers and apply historical relationships to the remainder. Drawdowns and new 
loan requests represent a potential drain of funds for a bank. Nevertheless, a bank 
has some leeway to control these items depending on current conditions. For 
example, during adverse conditions, a bank might decide to risk damaging some 
business relationships by refusing to approve new loan requests that it would 
approve under normal conditions, or it might refuse to honour lending commitments 
that are not binding. The growth of secondary markets for various asset classes has 
broadened a bank’s opportunities to sell or securitise more assets with greater speed. 
Under normal circumstances, these assets can be quickly and easily converted to 
cash at reasonable cost and many banks include such assets in their analysis of 
available sources of funds. However, over reliance on the securitisation and sale of 
assets, such as loans, as a means of providing liquidity raises concerns about a 
bank’s true ability to match cash flows received from the sale of assets with funding 
needs. In determining the marketability of assets, they can be segregated into four 
categories by their degree of relative liquidity (Basel Committee on Banking 
Supervision, 2000, p. 10): 

• the most liquid category includes components such as cash and government 
securities which are eligible as collateral in central banks’ routine open market 
operations; these assets may be used to either obtain liquidity from the central 
bank or may be sold or repoed, or otherwise used as collateral in the market; 

• a second category is other marketable securities, for example equities, and 
interbank loans which may be saleable but which may lose liquidity under 
adverse conditions; 

• a less liquid category comprises a bank's saleable loan portfolio. The task here 
is to develop assumptions about a reasonable schedule for the disposal of a 
bank's assets. Some assets, while marketable, may be viewed as unsaleable 
within the time frame of the liquidity analysis; 

• the least liquid category includes essentially unmarketable assets such as loans 
not capable of being readily sold, bank premises and investments in 
subsidiaries, as well as, possibly, severely troubled credits; 

• assets pledged to third parties are deducted from each category. 
 
The view underlying the classification process is that different banks could assign 
the same asset to different categories on the maturity ladder because of differences 
in their internal asset-liability management. For example, a loan categorised by one 
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bank as a moderately liquid asset - saleable only late in the liquidity analysis time-
frame - may be considered a candidate for fairly quick and certain liquidation at a 
bank that operates in a market where loans are frequently transferred, that routinely 
includes loan-sale clauses in all loan documentation and that has developed a 
network of customers with whom it has concluded loan-purchase agreements. In 
categorising assets, a bank would also have to decide how an asset's liquidity would 
be affected under different scenarios. Some assets that are very liquid during times 
of normal business conditions may be less so under adverse conditions. This 
asymmetry of liquidity is increasingly an issue as markets for higher credit risk 
instruments and structured financial transactions have expanded. Consequently, a 
bank may place an asset in different categories depending on the type of scenario it 
is forecasting. 
 
1.2.5.2 Liabilities 
 
Analysing the liability side of the balance sheet for sources of funding requires a 
bank to understand the characteristics of their fund providers and funding 
instruments. To evaluate the cash flows arising from a bank’s liabilities, a bank 
would first examine the behaviour of its liabilities under normal business conditions. 
This would include establishing (Basel Committee on Banking Supervision, 2000, p. 
11): 

• the normal level of roll-overs of deposits and other liabilities; 
• the effective maturity of deposits with non-contractual maturities, such as 

demand deposits and many types of savings accounts; 
• the normal growth in new deposit accounts. 

 
As in assessing roll-overs and new requests for loans, a bank could use several 
possible techniques to establish the effective maturities of its liabilities, such as 
using historical patterns of deposit behaviour. For sight deposits, whether of 
individuals or businesses, many banks conduct a statistical analysis that takes 
account of seasonal factors, interest rate sensitivities, and other macroeconomic 
factors. For some large wholesale depositors, a bank may undertake a customer-by-
customer assessment of the probability of roll-over. The difficulty of establishing 
such estimates of liability behaviour has increased with the growing competition of 
investment alternatives to deposits. 
 
In examining the cash flows arising from a bank’s liabilities under abnormal 
circumstances (bank-specific or general market problems), a bank would examine 
four basic questions (Basel Committee on Banking Supervision, 2000, p. 11): 

• which sources of funding are likely to stay with the bank under any 
circumstance, and can these be increased? 

• which sources of funding can be expected to run off gradually if problems 
arise, and at what rate? Is deposit pricing a means of controlling the rate of 
runoff? 
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• which maturing liabilities or liabilities with non-contractual maturities can be 
expected to run off immediately at the first sign of problems? Are there 
liabilities with early withdrawal options that are likely to be exercised? 

• does the bank have back-up facilities that it can draw down and under what 
circumstances? 

 
The first two categories represent cash-flow developments that tend to reduce the 
cash outflows projected directly from contractual maturities. In addition to the 
liabilities identified above, bank’s capital and term liabilities not maturing within the 
horizon of the liquidity analysis provide a liquidity buffer. Long-term liabilities are a 
particularly important form of liquidity buffer. The liabilities that make up the first 
category may be thought to stay with a bank, even under "worst-case" scenario. 
Some core deposits generally stay with a bank because, in some countries, retail and 
small business depositors may rely on the public-sector safety net to shield them 
from loss, or because the cost of switching banks, especially for some business 
services such as transactions accounts, may be prohibitive in the short run. 
 
The second category, liabilities that are likely to stay with a bank during periods of 
mild difficulties and to run off relatively slowly in a crisis, may include such 
liabilities as core deposits that are not already included in the first category. In 
addition to core deposits, in some countries, some level of particular types of 
interbank funding may remain with a bank during such periods. A bank’s own 
liability roll-over experience as well as the experiences of other troubled institutions 
should help in developing a timetable for these cash flows. 
 
The third category comprises the remainder of the maturing liabilities, including 
some without contractual maturities, such as wholesale deposits. Under each 
scenario, this approach adopts a conservative stance and assumes that these 
remaining liabilities are repaid at the earliest possible maturity, especially in crisis 
scenarios, because such money may flow to government securities and other safe 
havens. Factors such as diversification and relationship building are seen as 
especially important in evaluating the extent of liability runoff and a bank’s capacity 
to replace funds. Nevertheless, when market problems exist, some high-quality 
institutions may find that they receive larger-than-usual wholesale deposit inflows, 
even as funding inflows dry up for other market participants. However, banks should 
be wary of relying on this as a source of funding, as customers may equally decide 
to favour holding cash or transferring their assets outside the domestic banking 
system. Some banks, for example smaller banks in regional markets, may also have 
credit lines that they can draw down to offset cash outflows. While these sorts of 
facility are somewhat rare among larger banks, the possible use of such lines could 
be addressed with a bank’s liability assumptions. Where such facilities are subject to 
material adverse change clauses, then they may be of limited value, especially in a 
bank specific crisis. 
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1.2.5.3 Off-balance-sheet activities 
 
A bank should also examine the potential for substantial cash flows from its off-
balance- sheet activities. The contingent nature of most off-balance-sheet 
instruments adds to the complexity of managing off-balance-sheet cash flows. In 
particular, during stressful situations, off-balance-sheet commitments can have a 
significant drain on liquidity. Contingent liabilities, such as letters of credit and 
financial guarantees, represent potentially significant drain of funds for a bank, but 
are usually not dependent on a bank’s condition. A bank may be able to ascertain a 
"normal" level of cash outflows under routine conditions, and then estimate the 
scope for an increase in these flows during periods of stress. However, a general 
market crisis may trigger a substantial increase in the amount of drawdowns of 
letters of credit because of an increase in defaults and bankruptcies in the market. 
Other potential sources of cash outflows include swaps, written over-the-counter 
options, other interest rate and forward foreign exchange rate contracts, margin calls, 
and early termination agreements. Since over-the-counter derivative and foreign 
exchange products are principal-to-principal contracts, counterparties are likely to be 
sensitive to the credit rating of the bank and may ask for early cash-out collateral in 
the event of a decline in the bank’s credit rating or creditworthiness. 
 
1.2.5.4 Other assumptions 
 
Looking solely at instruments may ignore some factors that could significantly 
impact a bank's cash flows. Besides the liquidity needs arising from their own 
business activities, banks also require funds to support other operations. For 
example, many large banks provide correspondent banking services for foreign 
banks or provide access to payment systems for smaller domestic banks and other 
financial institutions. Where banks provide clearing services to correspondent banks, 
especially for trading activities, the value of their payment traffic will often be 
sufficiently large to affect the overall liquidity position of the payment bank. Banks 
should ask these customers to forecast their payment traffic so that the bank can plan 
its overall liquidity needs, although an element of unpredictability will remain. In 
the case of payment inflows, the correspondent is dependent on the sender making 
the payment as expected. If these plans are revised, there may be a delay before it, in 
turn, gives information to the payment bank. In the case of payment outflows, the 
bank may have some element of control over the scheduling of a payment during the 
day, although certain payments may have to be made before intra-day deadlines. The 
bank will, however, remain vulnerable to cancellation or delay of a payment by its 
customer, or an unexpected need to make a payment. 
 
1.2.6 Country Risk 
 
Country risk is the risk of economic or political changes in a foreign country; for 
example, lack of currency reserves will cause delays in loan payments to creditor 
banks, exchange control by monetary authorities, or even repudiation of debt (Fitch, 



Chapter 1 Introduction   17 

 

2000, p. 113). There are many risks related to local crises, including (Bessis, 2002, 
p.15-16): 

• Sovereign risk, which is the risk of default of sovereign issuers, such as 
central banks or government sponsored banks. The risk of default often refers 
to that of debt restructuring for countries. 

• A deterioration of the economic conditions. This might lead to a deterioration 
of the credit standing of local obligors, beyond what it should be under normal 
conditions.   Indeed, firms’ default   frequencies   increase   when   economic   
conditions deteriorate. 

• A deterioration of the value of the local foreign currency in terms of the bank's 
base currency. 

• The impossibility of transferring funds from the country, either because there 
are legal restrictions imposed locally or because the currency is not 
convertible any more. Convertibility or transfer risks are common and 
restrictive definitions of country risks. 

• A market crisis triggering large losses for those holding exposures in the local 
markets. 

 
A common practice stipulates that country risk is a floor for the risk of a local 
borrower, or equivalently, that the country rating caps local borrowers' ratings. In 
general, country ratings serve as benchmarks for corporate and banking entities. The 
rationale is that, if transfers become impossible, the risk materializes for all 
companies in the country. There are debates around such rules, since the intrinsic 
credit standing of a borrower is not necessarily lower than on that of the country. 
 
 
1.2.7 Performance Risk 
 
Performance risk exists when the transaction risk depends more on how the 
borrower performs for specific projects or operations than on its overall credit 
standing. Performance risk appears notably when dealing with commodities (Bessis, 
2002, p.16). As long as delivery of commodities occurs, what the borrower does has 
little importance. Performance risk is transactional because it relates to a specific 
transaction. Moreover, commodities shift from one owner to another during 
transportation. The lender is at risk with each one of them sequentially. Risk remains 
more transaction-related than related to the various owners because the commodity 
value backs the transaction. Sometimes, oil is a major export, which becomes even 
more strategic in the event of an economic crisis, making the financing of the 
commodity immune to country risk. In fact, a country risk increase has the 
paradoxical effect of decreasing the risk of the transaction because exports improve 
the country credit standing. 
 
 
 
 



18   MARKET RISK IN TRANSITION COUNTRIES  – VaR APPROACH 
  

 

1.2.8 Solvency risk 
 
Solvency risk is the risk of being unable to absorb losses, generated by all types of 
risks, with the available capital. It differs from bankruptcy risk resulting from 
defaulting on debt obligations and inability to raise funds for meeting such 
obligations. Solvency risk is equivalent to the default risk of the bank. 
 
Solvency is a joint outcome of available capital and of all risks. The basic principle 
of capital adequacy, promoted by regulators, is to define what level of capital allows 
a bank to sustain the potential losses arising from all current risks and complying 
with an acceptable solvency level. The capital adequacy principle follows the major 
orientations of risk management. The implementation of this principle requires 
(Bessis, 2002, p. 20): 

• Valuing all risks to make them comparable to the capital base of a bank. 
• Adjusting capital to a level matching the valuation of risks, which implies 

defining a tolerance level for the risk that losses exceed this amount, a risk 
that should remain very low to be acceptable. 

Meeting these specifications drives the regulators' philosophy and prudent rules. The 
value at risk concept addresses these issues directly by providing potential loss 
values for various confidence levels. 
 
 
1.2.9 Model risk 
 
Models are formal frameworks that enable the users to determine the values of 
outputs (e.g., asset prices, hedge ratios, VaR, etc.) based on postulates about the 
factors that determine those outputs. There are three main types of models, and the 
most important are fundamental models, which are formal systems tying outputs to 
inputs based on assumptions about dynamic processes, interrelationships between 
variables, etc. (Jorion, 2001, p.19). Some examples are the Black-Scholes option 
pricing model, which links the option price to the underlying price, the strike price, 
etc., parametric VaR models based on assumptions of some predetermined 
distribution of asset price. The second class of models are descriptive models, which 
are more superficial, but often insightful and easier to work with. They can be regard 
as short cuts to fundamental models. An example is a bond price model based on 
assumptions about yield movements - a model that sidesteps the complexities of the 
term structure by focusing instead on simplified 'stories' about yields. Both 
fundamental and descriptive models attempt to explain cause and effect - for instance, 
to explain bond prices in terms of the term structure or bond yields. The third class of 
models are statistical models that attempt to capture the regression or statistical best fit 
between variables, with the emphasis on the correlation between them rather than 
any causal connection. 
A model is only a representation of something, and should never be mistaken for 
what it represents. In the words of Emanuel Derman (Dowd, 2002, p. 217): 
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“... even the finest model is only a model of the phenomena, and not the real 
thing. A model is just a toy, though occasionally a very good one, in which case 
people call it a theory. A good scientific toy can't do everything, and shouldn't even 
try to be totally realistic. It should represent as naturally as possible the most 
essential variables of the system, and the relationships between them, and allow the 
investigation of cause and effect. A good toy doesn't reproduce every feature of the 
real object; instead, it illustrates for its intended audience the qualities of the 
original object most important to them. A child's toy train makes noises and flashes 
lights; an adult's might contain a working miniature steam engine. Similarly, good 
models should aim to do only a few important things well.” 
 
The best way to understand how models can go wrong is to understand how they are 
constructed. To understand a financial model, it is necessary to (Dowd, 2002, p. 
218): 

• Understand the securities involved, and the markets in which they are 
traded. 

• Isolate the most important variables, and separate out the causal 
(exogenous) variables from the caused (endogenous) variables. 

• Decide which exogenous variables are deterministic and which are 
stochastic or random, determine the way how the exogenous variables are 
to be modelled, and how the exogenous variables affect the endogenous 
ones. 

• Decide which variables are measurable, and which are not; decide how 
the former are measured, and consider whether and how the non-
measurable variables can be proxied or implicitly solved from other 
variables. 

• Consider how the model can be solved, and look for the simplest possible 
solutions. It is wise to consider the possible benefits and drawbacks of using 
approximations instead of exact solutions. 

• Program the model, taking account of programming considerations, 
computational time, and so on. 

• Test and backtest the model. 
• Implement the model, and evaluate its performance. 

 
A model, by definition, is a highly simplified structure, and it is unrealistic to expect 
a perfect representation of observed data. Some degree of error is to be expected, and 
this can be thought of as a risk of error - a form of model risk. However, not all 
output errors are due to model inadequacy (e.g., simulation methods generally 
produce errors due to sampling variation) and models that are theoretically flawed or 
inappropriate can sometimes produce very good results (e.g., simple options pricing 
models often perform well even when some of the assumptions are known to be 
invalid)1. The main outputs of financial models are prices (e.g., option prices for 
option pricing models, etc.), Greek hedge ratios (i.e., option deltas, gammas, etc.) or 

                                                 
1 For example, see e.g. Nelson, Foster, 1992, Härdle, Hlavka, Stahl, 2006.  
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risk measures such as VaR. But whatever the output, model risk in financial models 
always boils down to pricing error. This is self-evident when the output is itself a 
price, but is equally true for the other outputs as well. If the goal is to estimate VaR, 
it is necessary to estimate the value or price of the portfolio at the end of the holding 
period as an intermediate step.  
 
Model risk is not a particularly big issue when dealing with simple instruments. Model 
risk can be a much greater problem for complex positions because lack of 
transparency, unobserved variables (e.g., such as volatilities), interactions between 
risk factors, calibration issues, numerical approximations, and so on all make pricing 
more difficult. Model risk can arise from many different sources, and one of the most 
important is incorrect model specification. This can manifest itself in several ways 
(Dowd, 2002, p. 219-220): 

• Stochastic processes might be misspecified.  
• Missing risk factors. 
• Misspecified relationships among variables. 
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2 BASEL COMMITTEE AND ITS' ROLE IN MARKET 
RISK AWARENESS 

 
 
A market-based financial system relies on the existence of prudential, organizational 
and protective regulations, in order to preserve the safety and soundness of the 
financial system, to ensure its smooth functioning, and to provide adequate 
protection to users of financial services2. The particular business characteristics of 
banks have important implications regarding the need for their regulation. The need 
for bank regulation, given the objective of maintaining confidence in the financial 
system, arises from the fact that banks are uniquely vulnerable to contagious 
(systemic) illiquidity and insolvency collapse, and their failures can cause severe 
negative social externalities. This inherent vulnerability comes from the liquid 
nature of banks' liabilities and the illiquid nature of their assets, as well as the fact 
that banks' assets are worth less in liquidation than on a going-concern basis. In 
order to prevent bank runs, authorities provide protection to depositors through 
either formal deposit insurance schemes or informal support operations. Because the 
prospect of such protection tends to undermine market discipline by making 
depositors less careful where they place their money (moral hazard), thus permitting 
risky banks to take advantage of this safety net by choosing lower capital ratios than 
they would otherwise do, regulators seek to constrain risk-taking in order to limit the 
claims on the deposit insurance fund and/or the taxpayer3. The limited ability to 
price through risk-related premiums, or ration through limited coverage, the benefits 
of the safety net, turn the government effectively into the largest uninsured creditor 
of banks, forcing it to resort to the use of regulatory capital requirements. 
 
2.1 Regulatory objectives 
 
The fulfilment of prudential regulatory objective is subject to the following 
constraints (Constantinos, 1996, p. 5): 

• it must not discriminate between institutions providing the same functions, 
that is it should maintain a level playing field (competitive neutrality); 

• it must not distort portfolio choices by imposing substantial compliance 
costs, and thus reduce the risk-transfer efficiency of the banking system. 
There is therefore a trade-off between the cost of imposing capital 
requirements and the costs of default. Given this trade-off, the optimal 
capital structure of a financial institution from a social viewpoint inevitably 
exposes society to some risk. Under the present piecemeal approach to 
capital standards, a more limited condition to the above is that the standard 
has risk weights consistent with the individual positions' contributions to the 
risk component for which the standard is being applied. 

                                                 
2 For a detailed discussion on these issues see Vitas, 1991. 
3 See Buser, Chen, Kane, 1981 for the notion of capital regulation as an implicit premium for 

deposit insurance. 
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Finally, the international harmonization of rules is another important objective 
nowadays, in order to prevent regulatory arbitrage and to reduce compliance costs. 
The techniques of bank regulation that have evolved reflect these regulatory 
objectives. Due to their inherently illiquid nature, banks typically have access to a 
lender of last resort facility, which is also related to the banks' important role in the 
payments system and in the transmission mechanism of monetary policy. In 
addition, there are other, implicit or explicit, measures of the regulatory safety net 
that protect the safety and soundness of banks. On the need to maintain solvency in 
difficult economic times, as well as to prevent moral hazard behaviour arising from 
the existence of the safety net, it is the function of bank capital to provide a 
permanent cushion against unexpected losses, enabling individual banks, as well as 
the whole financial system, to survive. The concept of capital adequacy relates the 
risk exposure of a bank to the amount of capital, with minimum capital standards 
being the minimum permissible amount of capital in a bank. Risk-based capital 
standards seek to replace depositor pressures to limit bank risk-taking with 
regulator-required increases in capitalization as a bank's operations become riskier. 
In this regulatory definition of capital, bank supervisory authorities must define the 
balance sheet instruments that comprise the capital resources of a bank, in order to 
determine compliance with the minimum capital standards. Historically, measures of 
capital standards were based on various leverage ratios, usually expressing the 
amount of capital as a percentage of the bank's total assets. The growth of off-
balance sheet activity and the existence of widely divergent classes of assets and 
instruments, which can greatly influence bank overall risk exposure, has rendered 
the use of total assets an increasingly imperfect proxy for the relative risks of an 
institution. Modern capital regimes often classify regulatory capital into two Tiers: 
Tier 1 - "core" capital, incorporating the highest elements (for example, equity and 
disclosed reserves); and Tier 2 -  "secondary" or "supplemental" capital, 
incorporating elements that have the capacity to absorb unexpected losses but are 
less permanent in nature - for example, various debt instruments such as 
subordinated debt4.  
 
In their traditional banking business - lending financed by deposits from customers - 
the main sources of risk for banks, as well as their regulation, were credit risk in 
their loan books and internal control systems. Credit risk requirement was accounted 
for in the Basel Committee’s 1988 Basle Capital Accord, which provided for the 
first time minimum credit risk-based capital standards. Besides the credit risk banks 
may also be exposed to securities market risk because, for example, they have lent to 
investment firms and they hold securities as collateral, because they engage in 
trading business off their own balance sheets, or because they have securities of 
subsidiaries or affiliates. Whereas, though, the first of these exposures can be dealt 
with, at least in principle, through regulatory limits on large exposures, the other two 
exposures inextricably link the bank's solvency to its securities operations. In effect, 
therefore, the bank's capital stands behind its securities unit. Attempts to incorporate 

                                                 
4  For a discussion on the role and concept of capital in financial institutions see e.g.  Berger, 

Herring, Szegö (1995). 
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market risk into the framework of risk-based capital standards were largely based on 
the deregulation of interest rates, the dismantling of capital controls, and the 
relaxation of banks' authorized range of activities. These developments have 
permitted the rapid growth in securities, foreign exchange, and derivatives trading 
by banks. Whereas exchange traded derivatives are extensively regulated by 
government agencies, it is the unregulated nature of OTC derivatives trading, as well 
as its fast growth, that has and it is still does cause concern for the regulators. 
Because trading-book exposures are taken with a view to resale or short-term profit, 
rather than to holding until maturity, the assets are treated as short-term and valued 
on a mark-to-market basis - the current price at which they could be sold in the 
market. Though it is widely agreed that the risks for end users or dealers involved in 
derivative activities are not new, derivatives business has two special attributes 
which distinguish it from more conventional financial activity: increased complexity 
and rapid risk transformation. The result is reduced transparency of financial 
markets and an inability to correctly assess the risks of a financial institution. The 
concerns here are that firstly, trading desk activities may lead to rapid changes in 
bank capital because of the potential volatility of the trading portfolio's value; and 
secondly, the failure of large banks involved in derivatives may have systemic 
implications. In effect, the heavy social costs associated with bank failures are 
carried over into the securities markets. Globalisation, by increasing the potential for 
transmission of cross-border financial contagion, has expanded those risks. This has 
been a primary motivation for the explicit introduction of market risk into risk-based 
capital adequacy standards. 
 
 
2.2 Capital adequacy regulation in banks prior to 1996 Basel 

Committee’s Amendments to the capital accord to incorporate 
market risk 

 
On June 26, 1974, German central bank - Deutche Bundesbank forced the troubled 
Bank Herstatt into liquidation. That day, a number of banks had released payment of 
DEM to Herstatt in Frankfurt in exchange for USD that was to be delivered in New 
York. Because of time-zone differences, Herstatt ceased operations between the 
times of the respective payments. The counterparty banks did not receive their USD 
payments. Responding to the cross-jurisdictional implications of the Herstatt 
debacle, the G-10 countries formed a standing committee under the auspices of the 
Bank for International Settlements (BIS)5. This committee is now known as Basle 
Committee on Banking Supervision. The committee comprises representatives from 
central banks and regulatory authorities. Over time, the focus of the committee has 
evolved, embracing initiatives designed to (Holton, 2002, p.11): 

                                                 
5 The BIS is an international organization that fosters international monetary and financial 

cooperation and serves as a bank for central banks. It was originally formed by the Hague 
Agreements of 20 January 1930, which had a primary purpose of facilitating Germany’s 
payment of reparations following World War I. Today, BIS is a focal point for research 
and cooperation in international banking regulation. 
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• define roles of regulators in cross-jurisdictional situations; 
• ensure that international banks or bank holding companies do not escape 

comprehensive supervision by some “home” regulatory authority; 
• promote uniform capital requirements so banks from different countries may 

compete with one another on a “level playing field.” 
 
While the Basle Committee’s recommendations lack force of law, G-10 countries 
are implicitly bound to implement its recommendations as national laws. In 1988, 
the Basle Committee published a set of minimal capital requirements for banks. 
These were adopted by the G-10 countries, and have come to be known as the 1988 
Basle Accord. The 1988 Basle Accord differed from the SEC’s Uniform Net Capital 
Rule (UNCR) 6 in two fundamental respects: 

• It was international, whereas the UNCR applied only to US firms. 
• It applied to banks whereas the UNCR applied to securities firms. 

 
Historically, minimum capital requirements have served fundamentally different 
purposes for banks and securities firms. Banks were primarily exposed to credit risk. 
They held illiquid portfolios of loans supported by deposits. Loans could be 
liquidated rapidly only at “fire sale” prices. This placed banks at risk of “runs.” If 
depositors feared a bank might fail, they would withdraw their deposits. Forced to 
liquidate its loan portfolio, the bank would succumb to staggering losses on those 
sales. Deposit insurance and lender-of-last-resort provisions eliminated the risk of 
bank runs, but they introduced a new problem. Depositors no longer had an 
incentive to consider a bank’s financial viability before depositing funds. Without 
                                                 
6 Securities and Exchange Commission (SEC) is the primary regulator of US securities 

markets. In 1975, the SEC updated its capital requirements, implementing a Uniform Net 
Capital Rule (UNCR) that would apply to all securities firms trading non-exempt 
securities. As with the SEC’s earlier capital requirement, haircuts were applied to 
proprietary securities positions as a safeguard against market losses that might arise during 
the time it would take to liquidate such positions. Financial assets were divided into 12 
categories such as government debt, corporate debt, convertible securities, preferred stock, 
etc. Some of these were further broken down into subcategories primarily according to 
maturity. To reflect hedging effects, long and short positions were netted within 
subcategories, but only limited netting was permitted within or across categories. An 
additional haircut was applied to any concentrated position in a single asset. Haircut 
percentages ranged from 0% for short-term treasuries to, in some cases, 30% for equities. 
Even higher haircuts applied to illiquid securities. The percentages were apparently based 
upon the haircuts banks were applying to securities held as collateral. In 1980, 
extraordinary volatility in interest rates prompted the SEC to update the haircut 
percentages to reflect the increased risk. This time, the SEC based percentages on a 
statistical analysis of historical security returns. The goal was to establish haircuts 
sufficient to cover, with 95% confidence, the losses that might be incurred during the time 
it would take to liquidate a troubled securities firm - a period the SEC assumed to be 30 
days. Although it was presented in the archaic terminology of “haircuts”, the SEC’s new 
system was a rudimentary VaR measure. In effect, the SEC was requiring securities firms 
to calculate one-month 95% VaR and hold extra capital equal to the indicated value 
(Holton, 2002, p.9). 
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such marketplace discipline, regulators were forced to intervene. One solution was 
to impose minimum capital requirements on banks. Because of the high cost of 
liquidating a bank, such requirements were generally based upon the value of a bank 
as a going concern. 
  
The primary purpose of capital requirements for securities firms was to protect 
clients who might have funds or securities on deposit with a firm. Securities firms 
were primarily exposed to market risk. They held liquid portfolios of marketable 
securities supported by secured financing such as repos. A troubled firm’s portfolio 
could be unwound quickly at market prices. For this reason, capital requirements 
were based upon the liquidation value of a firm. In a nutshell, banks entailed 
systemic risk and needed long-term capital in the form of equity or long-term 
subordinated debt. Securities firms could operate with more transient capital, 
including short-term subordinated debt and were not perceived as posing systemic 
risk. The 1988 Basle accord focused upon a bank’s viability as a going concern. It 
set minimum requirements for long-term capital based upon a formulaic assessment 
of a bank’s credit risks. It did not specifically address market risk. The SEC’s 
UNCR focused on a securities firm’s liquid capital with haircuts for market risk. 
Because banks and securities firms are so different, it is appropriate to apply 
separate minimum capital requirements to each. This was feasible in the United 
States and Japan, which both maintained a statutory separation of banking and 
securities activities. The United Kingdom enforced no statutory separation of 
banking and securities industries, but distinguished between them as a matter of 
custom. The Bank of England supervised banks. Securities markets were 
traditionally self-regulating, but the sweeping 1986 Financial Services Act, 
informally called the “Big Bang” changed this. It established the Securities and 
Investment Board (SIB) to regulate securities markets. The SIB delegated much of 
its authority to self-regulating organizations (SROs), granting responsibility for 
wholesale securities markets primarily to the Securities and Futures Authority 
(SFA). If a British based firm engaged in both banking and securities activities, both 
the Bank of England and the SFA would provide oversight, with one playing the role 
of lead regulator. In 1992, the SFA adopted financial rules for securities firms, 
which included capital requirements for credit and market risks. These specified a 
crude VaR measure for determining market risk capital requirements for equity, 
fixed income, foreign exchange and commodities positions. By the 1990’s, concepts 
from portfolio theory were widely used by institutional equity investors. London had 
traditionally emphasized equity financing to a greater extent than other financial 
centres, and this emphasis appears to have influenced the SFA in designing its VaR 
measure. While crude from a theorist’s standpoint, the measure incorporated 
concepts from portfolio theory, including the CAPM distinction between systematic 
and specific risk. The measure did not employ covariances, but summing risks under 
square root signs and applying various scaling factors seems to have accomplished 
the same purpose. Because of its pedigree, the SFA’s VaR measure came to be 
called the “portfolio approach” to calculating capital requirement. As fate would 
have it, the SFA’s initiative would soon be overtaken by events within the European 
Union (Holton, 2002, p.12-13). As opposed to United Kingdom and USA, Germany 



26   MARKET RISK IN TRANSITION COUNTRIES  – VaR APPROACH 
  

 

on the other hand was traditionally oriented toward universal banking, which made 
no distinction between banks and securities firms. Under German law, securities 
firms were banks, and a single regulatory authority oversaw banks. France and the 
Scandinavian countries had similar regimes. Accordingly, Europe supported two 
alternative models for financial regulation:  

• Continental, or German model of universal banking, and 
• Anglo-Saxon, or British model of generally separate banking and securities 

activities. 
 

The European Union (EU) had a goal of implementing a common market by 1993. 
As the nations of Europe moved towards integrating their economies, the two 
models of financial regulation came into conflict. New EU laws needed either to 
choose between or somehow blend the two approaches. The issue was settled by the 
1989 Second Banking Coordination Directive and the 1993 Investment Services 
Directive. These granted European nations broad latitude in establishing their own 
legal and regulatory framework for financial services. Financial firms were granted a 
“single passport” to operate throughout the EU subject to the regulations of their 
home country. A bank domiciled in a EU country that permitted universal banking 
could conduct universal banking in another EU country that prohibited it. With 
France and Germany committed to universal banking, the single passport model 
effectively opened all of Europe to universal banking. It also permitted Britain to 
maintain a separate regulatory framework for its non-bank securities firms. 
 
Since the securities operations of Germany’s universal banks would be competing 
with Britain’s non-bank securities firms, there was a desire to harmonize capital 
requirements for the two. The solution implemented with the 1993 Capital 
Adequacy Directive (CAD) was to regulate functions instead of institutions. The 
CAD established uniform capital standards applicable to both universal banks’ 
securities operations and non-bank securities firms. A universal bank would identify 
a portion of its balance sheet as comprising a trading book. Capital for the trading 
book would be held in accordance with the CAD while capital for the remainder of 
the bank’s balance sheet would be held in accordance with the 1988 Basle Accord, 
as implemented by Europe’s 1989 Solvency Ratio Directive7. Bank capital was 
conservatively defined according to the 1989 Own Funds Directive, but local 
regulators had discretion to apply more liberal rules for capital supporting the 
trading book. A bank’s trading book would include equities and fixed income 
securities held for dealing or proprietary trading. It would also include equity and 
fixed income OTC derivatives, repos, certain forms of securities lending and 
exposures due to unsettled transactions. Foreign exchange exposures were not 
included in the trading book, but were addressed organization-wide under a separate 
provision of the CAD. A minimum capital requirement for the market risk of a 
trading book was based upon a crude VaR measure intended to loosely reflect a 10-
day 95% VaR metric. This entailed separate general risk and specific risk 

                                                 
7 The CAD and 1988 Basle Accord only set minimum requirements. National authorities 

were free to set higher requirements. 
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computations, with the results summed. The measure has come to be known as the 
“building-block” approach. General risk represented risk from broad market moves. 
Positions were divided into categories, one for equities and 13 for various maturities 
of fixed income instruments. Market values were multiplied by category-specific 
risk weights, 8% for equities and maturity-specific percentages for fixed income 
instruments. Weighted positions were netted within categories, and limited netting 
was permitted across fixed income categories. Specific risk represented risk 
associated with individual instruments. Positions were divided into four categories, 
one for equities and three covering central government, qualifying and other fixed 
income instruments. Risk weights were (Holton, 2002, p. 14): 

• 2% for equities, 
• 0% for central government instruments, 
• 0.25%, 1% or 1.6% for qualifying instruments, depending upon maturity, 

and 
• 8% for other instruments. 

 
Results were summed without netting, either within or across categories. By netting 
positions in its general risk calculation, the CAD recognized hedging effects to a 
greater extent than the SEC’s UNCR. Like the UNCR, it recognizes no 
diversification benefits. In this regard, both the CAD and UNCR were less 
sophisticated than the SFA’s portfolio approach (Holton, 2002, p. 16). 

 
 

2.3 Measurement and management of market risk in financial 
institutions under 1996 market risk Amendments and “Basel II“ 
capital adequacy accord 

 
With banks increasing activity in capital markets, in the early 1990s, the Basle 
Committee decided to update its 1988 accord to include bank capital requirements 
for market risk. This would also have implications for non-bank securities firms. As 
indicated earlier, capital requirements for banks and securities firms served different 
purposes. Bank capital requirements had existed to address systemic risks of 
banking. Securities capital requirements had originally existed to protect clients who 
left funds or securities on deposit with a securities firm. Regulations requiring 
segregation of investor assets as well as account insurance had largely addressed this 
risk. Increasingly, capital requirements for securities firms were being justified on 
two new grounds (Holton, 2002, p. 15): 

• Although securities firms did not pose the same systemic risks as banks, it 
was argued that bank securities operations and non-bank securities firms 
should face the same capital requirements. The goal of CAD was to create a 
competitive level playing field through the harmonization between the two. 

• Some securities firms were active in the OTC derivatives markets. Unlike 
traditional securities, many OTC derivatives were illiquid and posed 
significant credit risk for one or both counterparties. This was compounded 
by their high leverage that could inflict staggering market losses on unwary 
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firms. Fears were mounting that the failure of one derivatives dealer could 
cause credit losses at other dealers. For the first time, non-bank securities 
firms were posing systemic risks. 

 
Any capital requirements the Basle Committee adopted for banks’ market risk would 
be incorporated into future updates of Europe’s CAD and thereby apply to Britain’s 
non-bank securities firms. If the same framework were extended to non-bank 
securities firms outside Europe, then market risk capital requirements for banks and 
securities firms would be harmonized globally. In 1991, the Basle Committee 
entered discussions with the International Organization of Securities Commissioners 
(IOSCO)8 to jointly develop such a framework. The two organizations formed a 
technical committee, and work commenced in January 1992. At that time, European 
regulators were completing work on the CAD, and many wanted the Basle-IOSCO 
initiative to adopt a similar building-block VaR measure. US regulators were 
hesitant to abandon the VaR measure of the UNCR, which has come to be called the 
“comprehensive” approach. The SFA’s portfolio approach was a third alternative 
(Shirreff, 1992). Of the three VaR measures, the portfolio approach was 
theoretically most sophisticated, followed by the building-block approach and 
finally the comprehensive approach. The technical committee soon rejected the 
portfolio approach as too complicated. Lead by European regulators, the committee 
gravitated towards the building-block measure, but US regulators resisted (Dimson, 
Marsh, 1995). Richard Breeden was chairman of the SEC and chairman of the 
technical committee. Ultimately, he balked at discarding the SEC’s comprehensive 
approach. An analysis by the SEC indicated that the building block measure might 
reduce capital requirements for US securities firms by 70% or more. Permitting such 
a reduction, simply to harmonize banking and securities regulations, seemed 
imprudent. The Basle-IOSCO initiative had failed. In the US, banking and securities 
capital requirements remained distinct for the time being. 
 
In April 1993, following the failure of its joint initiative with IOSCO, the Basle 
committee released a package of proposed amendments to the 1988 Basel accord. 
This included a document proposing minimum capital requirements for banks’ 
market risk. The proposal generally conformed to Europe’s CAD. Banks would be 
required to identify a trading book and hold capital for trading book market risks and 
organization-wide foreign exchange exposures. Capital charges for the trading book 
would be based upon a building-block VaR measure loosely consistent with a 10-
day 95% VaR metric. Like the CAD measure, this partially recognized hedging 
effects but ignored diversification effects. The committee received numerous 
comments on the proposal. Commentators perceived the building-block VaR 
measure as a step backwards. Many banks were already using proprietary VaR 
measures. A 1993 survey conducted for the Group of 30 (1994) by Price Waterhouse 
found that, among 80 responding derivatives dealers, 30% were using VaR to 

                                                 
8 IOSCO was founded in 1974 to promote the development of Latin American securities 

markets. In 1983, its focus was expanded to encompass securities markets around the 
world. 
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support market risk limits. Another 10% planned to do so. Most of these modelled 
diversification effects, and some recognized portfolio non-linearities. Commentators 
wondered if, by embracing a crude VaR measure, regulators might stifle innovation 
in risk measurement technology. In April 1995, the Basel committee released a 
revised proposal. The 1995 proposal introduced capital charges to be applied to 
the current market value of open positions (including derivative positions) in 
interest rate-related instruments and equities in banks' trading books, and to 
banks' total currency and commodities positions. The extension to market risk 
provides two alternative techniques for assessing capital charges. The building-
block measure - which was now called the standardized approach was changed 
modestly from the 1993 proposal and allows measurement of the four risks: interest 
rate, equity position, foreign exchange and commodity risks, using sets of forfeits. 
Risk weightings remained unchanged, so it may reasonably be interpreted as still 
reflecting a 10-day 95% VaR metric. Extra capital charges were added in an attempt 
to recognize non-linear exposures. Under the standardized approach, there are 
specific forfeits and rules for defining to which base they apply, allowing some 
offsetting effects within portfolios of traded instruments. Offsetting effects reduce 
the base for calculating the capital charge by using a net exposure rather than 
gross exposures. Full netting effects apply only to positions subject to an identical 
underlying risk or, equivalently, a zero basis risk. For instance, it is possible to 
offset opposite positions in the same stocks or the same interest rates.  
 
The second method allows banks to use risk measures derived from their own 
internal risk management models. Use of a proprietary VaR models requires 
approval of national central banks. A bank would have to have an independent risk 
management function and satisfy the regulator that it was following acceptable risk 
management practices. Regulator – central bank would also need to check if the 
proprietary VaR measure was sound. Proprietary measures would need to support a 
10-day 99% VaR metric and be able to address the non-linear exposures of options. 
Diversification effects could be recognized within broad asset categories - fixed 
income, equity, foreign exchange and commodities - but not across asset categories. 
Market risk capital requirements were set equal to the greater of (Basel Committee 
on Banking Supervision, 1996a, p.2): 

• previous day’s VaR, or 
• average VaR over the previous sixty days, multiplied by three. 

 
The April 1995 proposal allowed banks to use new Tier 3 capital, essentially 
made up of short-term subordinated debt to meet their market risks. Tier 3 capital is 
subject to a number of conditions, such as being limited to market risk capital and 
being subject to a “lock-in clause”, stipulating that no such capital can be repaid if 
that payment results in a bank's overall capital being lower than a minimum capital 
requirement. The Basle Committee’s new proposal was incorporated into an 
Amendment to the 1988 accord, which was adopted in 1996. The Amendment went 
into effect in 1998. In November 2005 Basel Committee published an updated 
version of Amendments to the Capital Accord to incorporate market risks, which is 
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practically identical to 1996 version of the Amendments, differing only in the 
treatment of specific risk, which was brought in line with Basel 2 capital accord. 
 
According to 2005 version of Amendments to the capital accord to incorporate 
market risk a trading book consists of positions in financial instruments and 
commodities held either with trading intent9 or in order to hedge other elements of 
the trading book. To be eligible for trading book capital treatment, financial 
instruments must either be free of any restrictive covenants on their tradability or 
able to be hedged completely. In addition, positions should be frequently and 
accurately valued, and the portfolio should be actively managed.  
A financial instrument is any contract that gives rise to both a financial asset10 of one 
entity and a financial liability11 or equity instrument of another entity. Financial 
instruments include both primary financial instruments (or cash instruments) and 
derivative financial instruments. Banks must have clearly defined policies and 
procedures for determining which exposures to include in, and to exclude from, the 
trading book for purposes of calculating their regulatory capital, to ensure 
compliance with the criteria for trading book set forth in the Amendments and taking 
into account the bank’s risk management capabilities and practices. Compliance 
with these policies and procedures must be fully documented and subject to periodic 
internal audit. These policies and procedures should, at a minimum, address a set of 
key points for overall management of a firm’s trading book (Basel Committee on 
Banking Supervision, 2005, p. 55-57):  
• The activities the bank considers to be trading and as constituting part of the 

trading book for regulatory capital purposes;  
• The extent to which an exposure can be marked-to-market daily by reference to 

an active, liquid two-way market; 
• For exposures that are marked-to-model, the extent to which the bank can: 

- identify the material risks of the exposure; 
- hedge the material risks of the exposure and the extent to which hedging 

instruments would have an active, liquid two-way market; 
- derive reliable estimates for the key assumptions and parameters used in 

the model. 
• The extent to which the bank can and is required to generate valuations for the 

exposure that can be validated externally in a consistent manner; 
• The extent to which legal restrictions or other operational requirements would 

impede the bank’s ability to effect an immediate liquidation of the exposure; 

                                                 
9 Positions held with trading intent are those held intentionally for short-term resale and/or 

with the intent of benefiting from actual or expected short-term price movements or to lock 
in arbitrage profits, and may include for example; proprietary positions, positions arising 
from client servicing (e.g. matched principal broking) and market making. 

10 A financial asset is any asset that is cash, the right to receive cash or another financial 
asset; or the contractual right to exchange financial assets on potentially favourable terms, 
or an equity instrument. 

11 A financial liability is the contractual obligation to deliver cash or another financial asset 
or to exchange financial liabilities under conditions that are potentially unfavourable. 



Chapter 2 Basel Committee and its' role in market risk awareness    31 

 

• The extent to which the bank is required to, and can, actively risk manage the 
exposure within its trading operations; and 

• The extent to which the bank may transfer risk or exposures between the 
banking and the trading books and criteria for such transfers. 

 
The basic requirements for positions eligible to receive trading book capital 
treatment are the following (Basel Committee on Banking Supervision, 2005, p.56): 
• Clearly documented trading strategy for the position/instrument or portfolios, 

approved by senior management (which would include expected holding 
horizon). 

• Clearly defined policies and procedures for the active management of the 
position, which must include: 

- positions are managed on a trading desk; 
- position limits are set and monitored for appropriateness; 
- dealers have the autonomy to enter into/manage the position within agreed 

limits and according to the agreed strategy; 
- positions are marked to market at least daily and when marking to model 

the parameters must be assessed on a daily basis; 
- positions are reported to senior management as an integral part of the 

institution’s risk management process; and 
- positions are actively monitored with reference to market information 

sources (assessment should be made of the market liquidity or the ability 
to hedge positions or the portfolio risk profiles). This would include 
assessing the quality and availability of market inputs to the valuation 
process, level of market turnover, sizes of positions traded in the market, 
etc. 

• Clearly defined policy and procedures to monitor the positions against the 
bank’s trading strategy including the monitoring of turnover and stale positions 
in the bank’s trading book. 

 
Positions in the bank’s own eligible regulatory capital instruments are deducted from 
capital. Positions in other banks’, securities firms’, and other financial entities’ 
eligible regulatory capital instruments, as well as intangible assets, will receive the 
same treatment as that set down by the national supervisor for such assets held in the 
banking book, which in many cases is deduction from capital. Where a bank 
demonstrates that it is an active market maker then a national supervisor may 
establish a dealer exception for holdings of other banks’, securities firms’, and other 
financial entities’ capital instruments in the trading book. In order to qualify for the 
dealer exception, the bank must have adequate systems and controls surrounding the 
trading of financial institutions’ eligible regulatory capital instruments. 
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2.3.1 The building-blocks approach to measuring capital charge for market 
risk 

 
The Basle Standardized Measure (BSM) is one of the two approaches prescribed by 
the Basle Committee in its market risk standard. Like the CAD, the general approach 
is based on the building-blocks approach, whereby the capital charge calculated for 
each position is the sum of two components: a specific risk requirement and a 
general risk requirement. The capital charges thus calculated are intended to 
substitute for the credit risk weightings which have been applied to trading book 
items (debt and equity securities and derivatives) in deriving capital adequacy ratios. 
The investment book is the subject to the provision of the Basel II Capital Accord. 
The capital charge for each risk category (interest rate, FX, equities and 
commodities) is first calculated separately and than simply added together to obtain 
the bank’s overall market risk capital charge.  
 
2.3.1.1 Interest Rate Instruments 
 
The interest rate capital charge under the standardized approach represents a sum of 
two components of market risk, each of which is separately calculated. Specific risk 
charge applies to the net open position for each particular instrument. General 
market risk refers to the general movement of interest rates in the market and for the 
purpose of calculating capital charge, long and short positions in different securities 
can be partially offset, which is not the case when calculating specific risk capital 
charge. The capital charge for the specific risk is designed to protect the bank from 
adverse movements in the price of a security that is due to the change in the 
creditworthiness of its issuer. For this reason, offsetting is allowed only between 
matched positions in the security issued by the same issuer. Because the change in 
the creditworthiness of the issuer may have a different impact on the value of a 
different securities that were issued by the same issuer, two securities can not be 
even partially offset when they differ in: maturity, coupon, call features etc (Basel 
Committee on Banking Supervision, 2005, p.7). The capital charge applies whether 
the bank has a net long or a net short position in a particular security. Specific risk 
charges for various types of bank’s debt positions are presented in table 1. 
 
Table 1 - Specific risk charges for bank’s debt positions 

Debt 
category* 

Maturity Capital charge(%) 

   
Government Any 0,00 
Qualifying 6 month or less 0,25 
 6 – 24 months 1,00 
 over 24 months 1,60 
Other Any 8,00 

*Weighting factors apply to the market values of the debt instrument not its notional amount 
Source: Basel Committee on Banking Supervision: Amendments to the Capital Accord to 
incorporate market risks. Bank for International settlements, Nov 2005. p. 8. 
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The government category in table 1 includes all debt instruments issued by OECD 
central governments and non-OECD central governments provided that established 
prerequisites are satisfied. The qualifying category includes debt instruments issued 
by OECD public sector entities and investment-grade rated instruments. In 
measuring general market risk banks may choose between two methods of 
calculation: maturity ladder or duration ladder. The duration ladder method present a 
better alternative but in its concept is very similar to maturity ladder method. 
Duration method uses a series of duration bands that are divided into duration zones. 
Duration bands and zones are set to take into account the differences in price 
sensitivities and interest rate volatilities across different duration periods. 
Calculating required capital consists of two steps: 

• The first step consists of allocating the marked to market value of a particular 
instrument to a corresponding duration band. Fixed rate instruments are 
allocated according to the residual duration, floating rate instruments are 
allocated according to the remaining duration until their next repricing date. 

• The second step consists of risk weighing instruments in each duration band 
according to the predescribed sensitivities.   

 
2.3.1.2 Equity  
 
As with debt securities, the minimum capital standard for equities is expressed in 
terms of two separately calculated charges for the specific risk of holding a long or 
short position in an individual equity and for the general market risk of holding a 
long or short position in the market as a whole. Specific risk is defined as the bank’s 
gross equity positions (i.e. the sum of all long equity positions and of all short equity 
positions) and general market risk as the difference between the sum of the longs 
and the sum of the shorts (i.e. the overall net position in an equity market). The long 
or short position in the market must be calculated on a market-by-market basis, i.e. a 
separate calculation has to be carried out for each national market in which the bank 
holds equities. The capital charge for specific risk is 8%, unless the portfolio is both 
liquid and well-diversified, in which case the charge will be 4%. Given the different 
characteristics of national markets in terms of marketability and concentration, 
national authorities will have discretion to determine the criteria for liquid and 
diversified portfolios. The general market risk charge is set at 8% (Basel Committee 
on Banking Supervision, 2005, p.19). Matched positions in each identical equity or 
stock index in each market may be fully offset, resulting in a single net short or long 
position to which the specific and general market risk charges will apply. For 
example, a future in a given equity may be offset against an opposite cash position 
in the same equity (Basel Committee on Banking Supervision, 2005, p.20). Besides 
general market risk, a further capital charge of 2% is applied to the net long or short 
position in an index contract comprising a diversified portfolio of equities. This 
capital charge is intended to cover factors such as execution risk. National 
supervisory authorities have to take care to ensure that this 2% risk weight applies 
only to well-diversified indices and not, for example, to sectoral indices (Basel 
Committee on Banking Supervision, 2005, p.20). 
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2.3.1.3 Foreign exchange 
 
Two processes are needed to calculate the capital requirement for foreign exchange 
risk. The first is to measure the exposure in a single currency position. The second is 
to measure the risks inherent in a bank’s mix of long and short positions in different 
currencies. Gold is dealt with as a foreign exchange position rather than a 
commodity because its volatility is more in line with foreign currencies and banks 
manage it in a similar manner to foreign currencies. The bank’s net open position in 
each currency should be calculated by summing (Basel Committee on Banking 
Supervision, 2005, p.23): 

• the net spot position (i.e. all asset items less all liability items, including 
accrued interest, denominated in the currency in question); 

• the net forward position (i.e. all amounts to be received less all amounts to 
be paid under forward foreign exchange transactions, including currency 
futures and the principal on currency swaps not included in the spot 
position); 

• guarantees (and similar instruments) that are certain to be called and are 
likely to be irrecoverable; 

• net future income/expenses not yet accrued but already fully hedged (at the 
discretion of the reporting bank); 

• depending on particular accounting conventions in different countries, any 
other item representing a profit or loss in foreign currencies; 

• the net delta-based equivalent of the total book of foreign currency options. 
 
Positions in composite currencies need to be separately reported but, for measuring 
banks’ open positions, may be either treated as a currency in their own right or split 
into their component parts on a consistent basis. Under the standardized approach, 
the nominal amount (or net present value) of the net position in each foreign 
currency and in gold is converted at spot rates into the reporting currency. The 
capital charge is equal 8% of the overall net open position. The overall net open 
position is measured by aggregating (Basel Committee on Banking Supervision, 
2005, p.25): 

• the sum of the net short positions or the sum of the net long positions, 
whichever is the greater; plus 

• the net position (short or long) in gold, regardless of sign. 
 
A bank doing negligible business in foreign currency and which does not take 
foreign exchange positions for its own account may, at the discretion of its national 
authority, be exempted from capital requirements on these positions provided that 
(Basel Committee on Banking Supervision, 2005, p.25): 

• its foreign currency business, defined as the greater of the sum of its gross 
long positions and the sum of its gross short positions in all foreign 
currencies, does not exceed 100% of eligible capital; and 

• its overall net open position as defined above does not exceed 2% of its 
eligible capital. 
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2.3.1.4 Commodities 
 
A commodity is defined as a physical product, which is or can be traded on a 
secondary market, e.g. agricultural products, minerals (including oil) and precious 
metals excluding gold, which is treated as a foreign currency (Basel Committee on 
Banking Supervision, 2005, p.26).  The price risk in commodities is often more 
complex and volatile than that associated with currencies and interest rates. 
Commodity markets may also be less liquid than those for interest rates, equity and 
currencies and, as a result, changes in supply and demand can have a more dramatic 
effect on price and volatility. Banks need also to guard against the risk that arises 
when the short position falls due before the long position. Owing to a shortage of 
liquidity in some markets it might be difficult to close the short position and the 
bank might be squeezed by the market. These market characteristics can make price 
transparency and the effective hedging of commodities risk more difficult. For spot 
or physical trading, the directional risk arising from a change in the spot price is the 
most important risk. However, banks using portfolio strategies involving forward 
and derivative contracts are exposed to a variety of additional risks, which may well 
be larger than the risk of a change in spot prices. These include (Basel Committee on 
Banking Supervision, 2005, p.26): 

• basis risk (the risk that the relationship between the prices of similar 
commodities alters through time); 

• interest rate risk (the risk of a change in the cost of carry for forward 
positions and options); 

• forward gap risk (the risk that the forward price may change for reasons 
other than a change in interest rates); 

 
In addition banks may face credit counterparty risk on over-the-counter derivatives, 
but this is captured by the Basel II Capital Framework. The funding of commodities 
positions may well open a bank to interest rate or foreign exchange exposure and if 
that is so the relevant positions should be included in the measures of interest rate 
and foreign exchange risks. There are two options for measuring commodities 
position risk under the standardized approach. These are the very simple framework 
and a measurement system which captures forward gap and interest rate risk 
separately by basing the methodology on seven time-bands. Both the simplified 
approach and the maturity ladder approach are appropriate only for banks which, in 
relative terms, conduct only a limited amount of commodities business. Major 
traders would be expected over time to adopt an internal model approach. For the 
simplified approach and the maturity ladder approach, long and short positions in 
each commodity may be reported on a net basis for the purposes of calculating open 
positions. However, positions in different commodities will as a general rule not be 
offsettable in this fashion. Nevertheless, national authorities have the discretion to 
permit netting between different sub-categories12 of the same commodity in cases 
where the subcategories are deliverable against each other. They can also be 
considered as offsettable if they are close substitutes against each other and a 

                                                 
12 Commodities can be grouped into clans, families, sub-groups and individual commodities. 
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minimum correlation of 0.9 between the price movements can be clearly established 
over a minimum period of one year. However, a bank wishing to base its calculation 
of capital charges for commodities on correlations has to satisfy the relevant 
supervisory authority of the accuracy of the method, which has been chosen, and 
obtain its prior approval. Where banks use the models approach they can offset long 
and short positions in different commodities to a degree that is determined by 
empirical correlations, in the same way as a limited degree of offsetting is allowed, 
for instance, between interest rates in different currencies. 
 
In calculating the capital charges under maturity ladder approach banks first have to 
express each commodity position (spot plus forward) in terms of the standard unit of 
measurement (barrels, kilos, grams etc.). The net position in each commodity is then 
converted at current spot rates into the national currency. Secondly, in order to 
capture forward gap and interest rate risk within a time-band (which, together, are 
sometimes referred to as curvature/spread risk), matched long and short positions in 
each time-band carry a capital charge. The methodology is rather similar to that used 
for interest rate related instruments. Positions in the separate commodities 
(expressed in terms of the standard unit of measurement) are first entered into a 
maturity ladder while physical stocks are allocated to the first time-band. A separate 
maturity ladder is used for each commodity. For each time-band, the sum of short 
and long positions which are matched is multiplied first by the spot price for the 
commodity, and then by the appropriate spread rate for that band. The residual net 
positions from nearer time-bands may then be carried forward to offset exposures in 
time-bands that are further out. However, recognising that such hedging of positions 
among different time-bands is imprecise, a surcharge equal to 0.6% of the net 
position carried forward is added in respect of each time-band that the net position is 
carried forward. The capital charge for each matched amount created by carrying net 
positions forward is calculated as described. At the end of this process a bank will 
have either only long or only short positions, to which a capital charge of 15% 
applies (Basel Committee on Banking Supervision, 2005, p.28). Under the 
simplified approach calculating the capital charge for directional risk, the same 
procedure will be adopted as in the maturity ladder approach. Once again, all 
commodity derivatives and off-balance-sheet positions, which are affected by 
changes in commodity prices, should be included. The capital charge equals 15% of 
the net position, long or short, in each commodity. In order to protect the bank 
against basis risk, interest rate risk and forward gap risk, the capital charge for each 
commodity is subject to an additional capital charge equivalent to 3% of the bank’s 
gross positions, long plus short, in that particular commodity. In valuing the gross 
positions in commodity derivatives for this purpose, banks should use the current 
spot price. 
 
Both the BSM and the CAD are minimum standards, leaving national authorities 
considerable latitude to apply additional requirements generally or to specific 
institutions. There are only a small number of divergences between the CAD and the 
BSM, the main ones being (Hall, 1995). 
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• with regards to the scope of coverage, the BSM is drawn up from a banking 
perspective, that is, it is only for banks (including bank holding groups) 
doing securities business. The CAD, in contrast, is targeted primarily at 
investment firms and then by extension at banks undertaking securities 
business. Moreover, the CAD is much more comprehensive - for example, it 
contains provisions relating to underwriting exposures and settlement risks 
which are not covered under the BSM; 

• with regards to regulatory capital, the BSM, despite having a more lenient 
lock-in clause, is more restrictive on the use of short-term Tier 3 
(subordinated loan) capital, as a percentage of original Tier 1 capital (own 
funds); 

• with regards to gross equity positions, a more stringent approach to specific 
risk is adopted under the BSM, which does not allow the capital requirement 
(set at 8%, or 4% for highly liquid and well-diversified portfolios) to be 
lowered to 2%, as permitted under the CAD; 

• with regards to foreign exchange risk, the BSM is more demanding, under 
its basic approach, in the capital charge it sets for an institution's net open 
foreign exchange position. 

 
The combination of the Basle II capital accord for credit and Amendments for 
market risks means that banks have to satisfy the following overall minimum capital 
requirements:  

• the credit risk requirements from the application of the 2004 Basle 2 capital 
accord to the banking book - that is, excluding debt and equity securities in 
the trading book and all positions in commodities, but including the credit 
counterparty risk on all OTC derivatives in both trading and banking books;  

• the capital charge for market risk as a result of the application of market 
risk-based requirements, whether using the BSM or the internal model. 

 
 
2.3.2 Internal model approach to measuring capital charge for market risk 
 
As a result of the public criticism of the building-blocks approach proposals, the 
Basle Committee has, in its final market risk standard decision, agreed to include the 
Internal model approach as an alternative approach to the building-blocks approach. 
The market risk standard covers the trading account of internationally active banks 
only. After a two-year implementation period, on the first of January 1998 the 
standard was adopted on a voluntary basis depending on the decision by the 
country's regulatory authorities. The assumptions underlying the Internal model 
approach are that banks are in a better position than regulators to devise models that 
accurately measure risk exposure over a holding period of concern to regulators, and 
that the regulatory authority can verify that each bank's model is providing such an 
accurate measure. In effect, the regulators relied on a bank's existing risk-
management model to determine levels of risk capital to be held. At the heart of this 
approach lies the VaR methodology that will be described in greater detail in 
Chapter 5. The use of an internal model is conditional upon the explicit approval of 



38   MARKET RISK IN TRANSITION COUNTRIES  – VaR APPROACH 
  

 

the bank’s supervisory authority. Home and host country supervisory authorities of 
banks that carry out material trading activities in multiple jurisdictions have to work 
co-operatively to ensure an efficient approval process. The supervisory authority 
will only give its approval if at a minimum (Basel Committee on Banking 
Supervision, 2005, p.35): 

• it is satisfied that the bank’s risk management system is conceptually sound 
and is implemented with integrity; 

• the bank has in the supervisory authority’s view sufficient numbers of staff 
skilled in the use of sophisticated models not only in the trading area but 
also in the risk control, audit, and if necessary, back office areas; 

• the bank’s models have in the supervisory authority’s judgement a proven 
track record of reasonable accuracy in measuring risk; 

• the bank regularly conducts stress tests. 
 
Supervisory authorities have the right to insist on a period of initial monitoring and 
live testing of a bank’s internal model before their final decision on use of such 
models for supervisory capital purposes. 
 
Setting capital adequacy standards under Internal model approach is a three-stage 
process. Firstly, the regulators set the quantitative standards (risk parameters) for 
capital calculation. Quantitative standards were placed in an attempt to make 
consistent estimates across institutions. This was done in response to important 
differences in model practice, identified when the Basle Committee compiled and 
distributed a test portfolio to fifteen banks in the major G-10 countries in order to get 
their VaR estimates. Moreover, the standards aim to address some overall 
measurement shortcomings. Quantitative standards are the following (Basel 
Committee on Banking Supervision, 2005, p.40-41): 

• model must cover all material risks in the trading book and must have a 
minimum number of thirteen risk factors (maturity bands). Moreover, it 
must be able to account for the non-linear pricing characteristics of option 
instruments; 

• a 99% one-sided confidence interval, in order to account for adverse 
movements only. This amounts to a risk estimate of three standard 
deviations away from the mean of a normal distribution of portfolio value 
changes; 

• ten trading-day holding period. This has been imposed to extend the period 
sufficiently to be of interest to regulators, and can be justified by appealing 
to concerns about illiquidity and the inability to wind down positions during 
extreme market movements; 

• a minimum of one year as the observation period for historical data to be 
used in calculating volatility, to be updated at least once a quarter. This is 
intended to resolve problems of differential volatilities and correlations 
arising from the choice of the size of the sample period; 

• all correlations are allowed, both within and across different asset classes 
(risk categories), to be estimated with equally-weighted daily data; 
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• since there is no economic model for determining how to extrapolate daily 
VaRs to the ten trading-day holding period, regulatory capital requirement is 
scaled up by the square root of time. Options exposures, which have 
nonlinear payoffs as a function of time, must be measured directly by 
considering the variance of two-week price movements. This can be done 
through nonlinear approximation methods involving higher-order risk factor 
sensitivities (gamma risk), volatility changes (vega risk), and spread risk; 

• bank's capital charge is based on the larger of the bank's previous day VaR 
estimate, and the average of its risk estimates over the prior sixty business 
days subject to a multiplication factor. This minimum scaling factor is 
included as a measure of the regulators' conservatism regarding the model's 
capital estimates. The proposed minimum value is 3, making the implied 
holding period equivalent to 90 days of unhedged exposure. The multiplier 
can be increased if the supervisor is not satisfied with the accuracy of the 
estimates; 

• an additional capital charge for the specific (idiosyncratic) risk of trading 
book debt and equity positions is levied. This is equal to one-half of the 
specific risk capital charge as calculated under the building-blocks 
approach; 

• for verifying risk estimates, a one-day backtesting methodology is proposed 
to be used quarterly, based on the frequency of realized daily losses 
exceeding the model's predicted losses at the 1% critical values. Banks are 
required to add to the multiplication factor a “plus factor” directly related to 
the ex-post performance of the model. 

 
Secondly, regulators must validate the VaR statistical models and processes which 
banks use to measure risk using the following qualitative standards (Basel 
Committee on Banking Supervision, 2005, p.36-37): 

• there must exist senior management oversight and active involvement in the 
process; 

• model must be fully integrated into the daily risk management process; 
• risk management must be independent of the business line - that is, it must 

belong to an autonomous risk control unit; 
• controls over inputs, data, model changes, and systems must be strong; 
• modelling system and the risk management process should be subject to an 

adequate, independent validation by the bank or a third party. This can be 
based on either, or both, the adequacy of the VaR estimates - for example, 
through backtesting and stress tests - and the documentation of the bank's 
policies and procedures. 

 
Finally, the bank must estimate overall VaR capital requirements on a daily basis. 
Stress testing simulations have to be periodically used in order to address concerns 
about the complexity and opaqueness of derivative instruments risks. There are also 
rules regarding banks that temporarily use a combination of the building-blocks 
approach and the Internal model approach. The Basle Committee, despite setting no 
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timetable, is keen to ensure that a bank which has developed one or more models 
will not be able to revert to measuring the risk using the building-blocks approach, 
unless the supervisor withdraws approval for the model. 
 
The scaling factor has been largely criticized as an unnecessary regulatory 
adjustment that undercuts the benefits of basing a capital charge on bank’s internal 
measuring system (Hendricks, Hirtle, 1997, p.4). Because the main advantage of 
using an internal measuring system for calculating capital charge is that it provides a 
more accurate measure of individual bank’s risk exposure than does the standardized 
approach, multiplication by a scaling factor is seen as a return to the standardized 
approach. Usually, in the developed markets, the internal measure will result in 
much lower capital charges for market risk (Crouhy, Galai, Mark, 2001, Jorion, 
2001). Setting the minimum scaling factor to 3 is seen by many as being overly 
conservative and could in fact deter the banks from developing their own internal 
models, at least for the purpose of calculating the capital charge for its’ market risk. 
Regulators argue that the purpose of the scaling factor is to secure the desired degree 
of coverage for the market risk capital charge. The market risk charge is intended to 
secure the bank from adverse movements in the financial markets and the 
subsequent fall of value in the bank’s portfolio. But even a correctly measured 99% - 
10 day holding period VaR does not provide the sufficient coverage in many cases. 
A perfectly calculated VaR figure would still mean that the bank is expected to lose 
an amount greater than its’ reserves one ten-day period in a hundred, which means 
that such an extreme event is expected to occur once every four years. Occurrence of 
such losses, so frequently cannot be tolerated by the regulators, especially because 
there exists a real threat that such a loss could occur for multiple banks 
simultaneously (Hendricks, Hirtle, 1997, p.4). The extreme losses could occur 
simultaneously because banks use similar forecasting models and similar trading 
strategies. Such a scenario could result in a “domino effect” on the grand scale. It 
can be argued that in comparison to the other solutions, such as setting an even 
higher confidence level or a longer holding period, the scaling factor provides a 
simple solution that is easy to implement. Higher confidence levels than 99% are 
very difficult to calculate and even harder to backtest since such events happen so 
rarely. The use of scaling factor by the regulators can also be justified by the very 
nature of VaR models. Each of the approaches used for calculating VaR figures has 
its’ own disadvantages and faults that can result in erroneous VaR forecasts. VaR 
models based on historical simulation are subject to the threat that historical 
observation period they are using does not entail extreme market events and for that 
reason they can be unsuitable for VaR estimates in case of sudden market crashes or 
regime shifts. Monte Carlo based VaR figures same as the parametric approach 
suffer from assuming that the distribution of the returns in the market is known, and 
these models usually assume that the distribution of returns is normal or lognormal. 
Normal distribution is adequate for forecasting the central part of a distribution, but 
not its’ tail parts. Parametric VaR models, including Monte Carlo methods, suffer 
from another drawback, and that is the assumption that the correlation between 
individual securities is constant. It has been empirically proven that in times of 
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financial crisis correlation coefficients converge to 1, thus nullifying the 
diversification effect (see Campbell, Koedijk, Kofman, 2002).  
 
For additional protection when using the internal model approach, market risk 
capital charge incorporates another feature intended to reward the satisfactory 
measuring models and punish the ones that are systematically underestimating the 
risk exposure of the bank’s portfolio. This additional requirement is called the 
backtesting requirement. Backtesting is a simple process of testing the accuracy of 
VaR models. A very simple statistical test also known as the Kupiec test is used to 
count the number of times during the year that the trading losses exceeded the VaR 
estimate (Basel Committee on Banking Supervision, 1996b).  

 
Bank using a model that experiences more exceptions then allowed, is subject to a 
higher scaling factor. Imposing the higher scaling factor for banks using models that 
experience five or more exceptions during the last 250 business days is based on a 
simple statistical technique using binomial distribution, that calculates the 
probability that an accurate VaR model would generate a certain number of 
exceptions during a year. The backtesting is set in such a way to minimize the risk of 
an accurate model being dismissed as faulty and the setting of higher scaling factor 
for the bank that has an accurate internal measurement model in place. The number 
of exception experienced during a year using a 99% confidence level and the 
accompanying scaling factors are presented in table 2.  
 
Table 2 - Number of exception experienced during a year and the accompanying 

scaling factors 
Number of exceptions   Scaling Cumulative* 
 in 250 trading days   factor probability (%) 
0 - 4  3,00 10,78 
5  3,40 4,12 
6  3,50 1,37 
7  3,65 0,40 
8  3,75 0,11 
9  3,85 0,03 
10 and more   4,00 < 0,01 
*Cumulative probability indicates the probability that an accurate model generates more than 
the number of exceptions reported in the first column. Probabilities are calculated using a 
binomial distribution with a sample size of 250 days. For the purpose of backtesting, an 
accurate model will produce more than five exceptions over a 250-day period 4,12 % of the 
time. 
Source: Basel Committee on Banking Supervision: Supervisory framework for the use of 
“backtesting” in conjunction with the internal models approach to market risk capital 
requirements. Bank for International settlements, Jan. 1996, p. 15. 
 
Banks that cannot meet all the requirements needed for the implementation of 
internal model approach are allowed to use the combination of the standard model 
and internal model. The combining of approaches is not allowed within the 
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individual risk category, but among different categories of risk. Once calculated the 
capital charge for the specific risk obtained through the standardized approach is 
simply added to the general market risk capital charge obtained by the internal 
model. If a combination of approaches is used, total capital charge is obtained as a 
simple sum of the two, and in that way, it ignores any diversification effects that are 
present in the portfolio. 
 
 
2.3.3 Advantages and disadvantages of standardized and internal model 

approach to measuring capital charge for market risk 
 
Internal models approach is clearly superior to standardized approach. Some in their 
criticism of standardized approach go so far, like Jorion (2001, p. 67), as to claim 
that the standardized approach is so inefficient that it requires as much as seven 
times more capital than a 10-day VaR, and that even with a multiplicative factor of 
three, banks will be able to cut their capital charges in half by adopting the internal 
models approach. Unfortunately, the real life situation is not so black and white, 
especially when applied to the developing financial markets. The truth is that both 
the standardised approach and the internal models approach have their own 
advantages and disadvantages, but the advantages of internal models approach 
outweigh its disadvantages, as opposed to the standardized approach. A number of 
criticisms can be brought up against the building-blocks approach, as it has been 
encapsulated in the CAD and the Basel’s standardized approach. Firstly, splitting a 
bank's business into a trading and a non-trading component, and applying separate 
and distinct definitions of capital to each, appears to make little prudential sense 
(Constantinos, 1996, p. 15-16): 

• Requiring the firm to hold different amounts of capital if it has holdings in a 
particular security in both its trading and banking books is not consistent with 
the stated aim of regulation as being neutral between different transactions. 
Moreover, the trading book concept is open to regulatory arbitrage in the form 
of switches between the banking and trading books. Given the existence of 
incentives because of the differential capital rules, banks can be motivated to 
present their longer-term investments as trading assets. The implication is that 
for most large borrowers of investment grade status, securities market 
financing, especially securitization, becomes relatively cheaper to 
conventional bank borrowing. To the extent that the process is due to arbitrary 
differences in the regulatory treatment of different types of debt issued by the 
same borrower, important inefficiencies and distortions are introduced. Also, 
many banks prefer to avoid the marking-to-market that comes with a switch to 
a trading book because of the fluctuations it causes to their earnings. 
Therefore, there are limits to the benefits of this type of regulatory arbitrage; 

• Artificially carving up the bank's business in two parts is not efficient in a 
portfolio sense since it ignores the possibility of transactions undertaken in the 
trading book which incidentally offset (hedge against) the exposures in the 
banking book. Hedging instruments falling within the trading book would 
continue to be subject to the credit risk-based capital requirements; 
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• While the trading book segregates assets used for trading purposes, as well as 
the regulatory capital used to back such assets, it does not segregate non-
capital liabilities. This means that a mixed securities and banking business - 
for example, a universal bank - is free to use its deposit base to fund its 
securities trading book. The problem here is that, since bank deposits 
generally enjoy deposit protection, deposit rates do not incorporate a risk 
premium that adequately reflects the risks a bank incurs. In a sense, banks' 
activities are being subsidized if banks are permitted to use protected deposits 
to fund their trading book. This in turn provides incentives for excessive risk 
taking (moral hazard) within the trading book. These difficulties could be 
avoided or at least alleviated if there existed funding rules that prevented or 
limited the use of deposits to support a bank's trading book and instead 
required funding in the form of outside risk money, the cost of which would 
depend on the perceived risk characteristics of the institution concerned. For 
such a funding rule to be effective, however, it would be necessary to have 
banks' securities activities conducted through separately incorporated entities; 

• Separation of risk-bearing from risk-taking is one reason why banks are 
subject to such extensive and conservative regulation on the asset side. 
Moreover, deposit funding of securities business gives EU banks an important 
competitive advantage over investment firms. 

 
The mandatory “lock-in provision” applicable to short-term subordinated debt does 
not provide the protection that is intended. A bank forced to invoke this clause in 
respect of its trading book, in effect defaulting, would immediately become suspect 
in the eyes of the marketplace, thereby risking a deposit run. Accordingly, a bank 
would feel compelled to make good any capital shortfall arising on its trading book 
so as to prevent the triggering of the lock-in. The presence of short-term 
subordinated debt to back the trading book therefore increases the solvency risk for 
the bank, because such debt cannot in practice be used to absorb losses on the 
trading book. On the other hand, a parent bank that provides “inside” subordinated 
debt to its securities subsidiary would have to hold bank capital against this 
exposure. There is therefore little purpose in segregating a bank's securities assets 
for capital adequacy purposes if the risks in this part of the business cannot be 
segregated from the bank. Secondly, splitting market risk into specific and general 
risk provides an effective basis for allowing the offsetting of long and short 
positions. However, by splitting market risk in this way, the implication is that the 
two elements are independent (that is, uncorrelated). If that is true, then 
mathematically total market risk should therefore be the square root of the sum of 
the squares of the two components, rather than their simple addition. In adopting the 
latter approach, it can only be presumed that the Commission considered it to be a 
sufficient approximation for total market risk. Moreover, complaints have also been 
directed at various rules within those two categories (Constantinos, 1996, p. 17): 

• CAD rules treat all equities equally, recognizing no qualitative distinctions 
such as the identity or credit rating of the issuer, and the market on which the 
equity is quoted or traded; 
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• CAD and BSM capital provisions for foreign exchange, large exposures 
(especially underwriting), and derivative transactions, are seen as being 
excessively high; 

• neither the CAD nor the BSM indicate specific levels of capital to be 
maintained against interest rate risk on the banking book, perhaps in the belief 
that the existing credit risk framework is effective in capturing those risks; 

• positions of the same sign in different securities or maturities are not assigned 
any diversification benefits. 

 
These criticisms are the inevitable result of the adoption of a set of rule-of-thumbs 
that crudely assigns risk charges to specific instruments. Risk is treated as though it 
can be evaluated separately by security type and maturity, in contrast to modern 
portfolio theory. The result is that: 

• firms hold too much capital because some of the benefits of diversification 
and hedging are ignored; 

• effective risk management is not encouraged since it is not aligned to 
industry's best practice, that of sophisticated in-house risk measurement and 
management models; 

• it will be difficult to adapt the proposal to new products, because of its static 
nature. 

 
Finally, another controversial issue with respect to the CAD is the desirability and 
feasibility of a level playing field between banks and investment firms in EU 
countries. The reason is the different views taken by regulators for the two types of 
financial institutions, focusing more on solvency and systemic risk for banks, and 
liquidity and customer protection for securities firms. Bearing in mind all the stated 
critiques of the standardized approach it should be stressed that much depends on the 
manner in which these provisions are implemented by the national authorities, as 
well as on the institutional framework, particularly differences in accounting 
practices. Accounting practices that can have the greatest influence on the size of 
capital requirements and deserve significant consideration are (Constantinos, 1996, 
p. 18): 

- extent to which assets and liabilities can be offset against each other; 
- rules governing hedge accounting; the valuation of securities positions;  
- methodologies employed in marking derivatives to market;  
- application of net present value accounting techniques to value and report 

financial instruments. 
 
One important advantage of the building-blocks approach that is readily apparent, 
based on the experience of the 1988 Basle Accord and given the similarity in the 
methodology to Standardized approach from Basel II Accord, is the willingness of 
many countries to implement regulations, such as this one, that are relatively simple 
to follow. However, it is fair to say that the building-blocks approach is not a very 
efficient approach to measure, and defend against, market risk. The “one size fits 
all” approach does not reflect the diversity of portfolios and strategies that exist, nor 
does it keep up with changing circumstances. Moreover, though the opportunity for 
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gaming the rules by financial institutions is present in all types of regulations, the 
building-blocks approach is particularly vulnerable because of its crudeness. The 
fundamental problem is that the procedure for measuring market risk is crude and it 
is at variance with industry best practice in risk measurement, the use of 
sophisticated in-house models. 
 
The main advantages of the internal models approach, as proposed by the Basle 
Committee, over the building-blocks approach are the following: 

• it does not generate excessive capital requirements for a widely diversified 
book in the way that the simple building-blocks approach does, unfortunately 
this assumption is highly questionable in the developing capital market 
(Soczo, 2001); 

• it encourages sophisticated risk management by allowing the use of the same 
internal VaR model used for daily operations, and by rewarding continuous 
improvement (by way of lower capital requirements) in the way that models 
are built and risks are measured. By contrast, the CAD rules state that 
European banks are allowed to submit their VaR figures only if they are 
higher than the figures that would apply to them using the old building-blocks 
approach. This is rarely the case, implying that the incentive to improve risk 
measurement systems is not there; 

• supervisory task may be simplified compared to the building-blocks approach, 
since the regulator only has to set the risk parameters and validate each bank's 
risk assessment methodology. This argument is not universally acceptable 
though because of the problems that validation poses; 

• it allows regulatory risk measures to evolve at the same time as risk 
measurement techniques used in banks' VaR models. 

 
However, there are also some problems with the internal models approach. Some of 
the assumptions on which the approach is based have been challenged on various 
grounds. Firstly, the regulators may find it extremely difficult to evaluate and verify 
the accuracy of sophisticated risk management models - a question of regulatory 
transparency and capacity. Since there is no standard regulatory benchmark model, 
an ex ante approach to validation is not possible. However, ex post verification 
through the comparison of the bank's prior risk estimate and the portfolio's 
subsequent performance is unappealing. The reason is the low statistical power of 
such tests: is the violation a rare occurrence of a low probability event that exceeds 
the size of an accurately estimated tail probability, or is the bank's estimate of the 
probability of the event biased? Basel Committee tries to resolve this problem 
through the use of a large sample (one year of daily data or 250 observation points) 
and probability analysis. Specifically, it estimated the probability that the prediction 
of an accurate model would be wrongly classified as an exception at the 99% 
confidence level, and set a maximum number of exceptions per year of backtesting, 
beyond which a plus factor is activated. Secondly, extrapolation from single-day 
potential losses to longer periods does not adequately measure risk exposures13. On 
                                                 
13 Implications of this assumption are explained in detail in Chapter 4.1.2.5. 
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the one hand, the process assumes a static portfolio position. In reality, a trading 
desk would be constantly adjusting its portfolio to reflect changing market 
conditions - the so-called endogeneity of trading risk. Over longer periods than 
daily, therefore, it is unrealistic to assume a fixed portfolio composition, especially 
during periods of significant asset price volatility, unless there has been such a 
severe market movement that it is impossible to liquidate existing positions (the so-
called price gapping), or enter into others. On the other hand, there are two more 
problems with extrapolation, both of them purely statistical. One is that the true 
short-run distribution of primitive asset returns - those into which all positions are 
converted as units of measurement - is in practice not normal. The other is that the 
returns on primitive assets may not time-aggregate in a uniform fashion across 
different asset categories. Both compromise the accuracy of long horizon risk 
estimates derived from one-day estimates. Moreover, option nonlinearities, if not 
adequately captured, invalidate the linear measure of trading risk exposure implicit 
in short-horizon risk measurement models due to curvature. It should be noted, 
however, that the criticisms of non-normality and curvature are not shortcomings of 
the models themselves but of the attempt to scale-up from linear, one-day VaRs to a 
10-day horizon. These weaknesses were recognized by the Basle Committee, which 
allowed them in order to limit the industry burden. At the same time, however, the 
Basle Committee has encouraged the switch by firms to a 10-day full revaluation of 
their portfolio positions in market shock model simulations. 
 
Thirdly, the various constraints imposed on banks' internal models may create 
perverse incentives for banks in two ways (Constantinos, 1996, p. 26): 
• they may lead, in the extreme, to a second set of models maintained only for 

regulatory risk-based capital determination. This would allow banks to adjust 
the constrained models in order to minimize their capital requirements. By 
micromanaging modelling, the internal model approach invites gaming by the 
bank, in the same way that the building-blocks approach does; 

• choice of model parameters may be too conservative for the bank and internally 
inconsistent. For example, the arbitrary choice of a large minimal multiplier 
number 3, which came about as a compromise figure by regulators in different 
countries, as well as the choice of a 60 business day moving average of daily 
VaR calculations and the imposition of an artificial floor on specific risk charges 
may impose unduly burdensome capital requirements on most banks. In favour 
of this argument speaks the research by the International Swaps and Derivatives 
Association (ISDA) Task Force, which has shown that the core parameters of 
the capital set-aside alone provide enough capital cover of profit and loss 
movements for the 1987 stock market crash, the 1990 Gulf War, the 1992 ERM 
crisis, and the 1994 bond market decline. Moreover, the proposed ten-day 
holding period assumption compromises the performance of meaningful 
backtesting. It will then be natural for banks to respond by reducing their 
effective capital costs. This can be done through the increase in their multiperiod 
risk relative to their daily VaRs - for instance by increasing the use of option 
securities with nonlinear payoff - thereby gaming the regulations once again. 
Alternatively, they can simply choose to forego the development of their own 
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internal models in favour of the building-blocks approach. This is a very serious 
concern that is also confirmed in work done by members of the London 
investment Banking Association (LIBA) and ISDA. 

 
Fourthly, the VaR concept itself focuses solely on the probability of losses greater 
than a specified amount but totally ignores how large those losses are expected to be 
when they occur14. Although the fixed VaR multiplier can be thought of as providing 
an additional layer of prudence, designed to account for the extent of maximum 
losses, as well as for possible market illiquidity and for leptokurtotic distributions of 
financial returns, the multiplier only addresses the average-loss distribution. This 
might not be so bad in the sense that the regulators now clearly delineate a situation 
of extreme financial stress, beyond which they can be expected to intervene. 
However, the system is open to gaming since banks can invest in projects that trade 
slightly higher expected returns for larger, though no more likely, potential losses. 
Fifth, adjustments for conservatism are reflected in many of the Internal model 
approach quantitative constraints, even though not all VaR measurement 
shortcomings err on the non-conservative side. This does not lead to a transparent 
risk measurement. Banks have argued that, if regulators want to add conservatism, 
they should do it with other means - the multiplication factor, the plus factor, or the 
confidence interval - but not by artificially building in assumptions, which are not 
the best estimate of the model. Finally, if the regulators are concerned with the 
calculation of VaR on a liquidation basis as opposed to a going concern basis, VaR 
can no longer be used with confidence to measure potential loss in the event of 
having to liquidate positions. The reason is that the liquidation horizon for any 
position cannot be arbitrarily set, as assumed under the conventional VaR measure, 
but depends on the costs of liquidation (Constantinos, 1996, p. 28). 
 
 
2.4 Characteristics of risk measurement and management in transition 

markets 
 
On May 1, 2004, ten new Member States - eight CEE countries, Malta and Cyprus 
joined the EU. This enlargement raised the EU population by 74 million inhabitants 
to 454 million. The large number of countries and the size of the population 
involved (20% of the EU-15) made it EU’s biggest enlargement ever. In early 
November 2003, the European Commission published its Monitoring Report on the 
implementation of the acceding countries’ commitments (made in the accession 
negotiations) regarding the acquis communautaire. The report notes that the 
acceding countries made considerable progress in adopting the EU’s acquis 
communautaire. However, it also lists a number of issues that still have to be 
resolved by the new Member States. Poland has to ensure the independence of its 
central bank and accelerate the harmonization of the legal framework for the 

                                                 
14 A preferred measure of maximum loss over a holding period is the expected tail loss (ETL) 

/ expected shortfall (ES) (see e.g. Yamai, Yoshiba, 2002a, 2002b, Acerbi, Tasche, 2001, 
2002, Acerbi, Nordio, Sirtori, 2001, Tasche, 2002).  
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financial sector. The same holds for the insurance sector of Latvia, Lithuania, 
Slovakia and Czech Republic as well as for investment services and securities 
markets in Estonia, Latvia, Lithuania and Cyprus. Further, the report states that 
independence of financial market supervision has to be strengthened in all of the 
European transition states. In addition, Latvia will have to further liberalize capital 
movements and Lithuania will have to introduce appropriate payment systems. 
Republic of Croatia started its accession negotiations on 03.10.2005 and is hopping 
to become a full EU member by 2012. Although still not a member, and lagging 
behind the EU new member states in a number of areas and requirements that it still 
needs to fulfil, when looking at undertaken reforms, legal framework and 
development of financial, and especially banking sector, Croatia is equal to the EU 
new member states. Croatian banking sector has been practically completely 
privatised by the late ’90’s, with only a negligible part of banking sector still being 
owned by domestic shareholders and state. Banks from EU member countries, 
predominately Italy and Austria at present hold 91,3% of banks’ assets in Croatia 
(Croatian National Bank, 2005, 106 p.). 
 
The financial markets of European transition countries, but especially CEEC have 
been liberalized and there are an increasing number of foreign financial institutions 
now operating in them. All segments of the financial sector have undergone a 
process of consolidation, and just a few companies now control most of the total 
financial assets in majority of the countries. Similarities in their economic histories 
and experiences, as well as comparable methods applied to building the market 
economies, lead to creation of similar structures and institutions. Similarities are 
especially pronounced in the financial sector. In all of the transition countries, there 
is a clear domination of banks as financial intermediaries (in terms of asset size); 
their share in total assets of financial institutions exceeds eighty percent (in Slovakia 
and Croatia even over ninety percent) (National Bank of Slovakia, 2005, Croatian 
National Bank, 2005). A limited role of the equity market and great importance of 
public debt financing needs undermine the role of intermediaries active on the 
market, mainly investment funds and brokerage houses. In some countries, there are 
a large number of institutions licensed, but assets under their management are 
disproportionably low (Golajewska, Wyczański, 2002, 8 p.). The depth of the 
financial markets is highly diversified across the countries, as measured by total 
assets to GDP ratio. It ranges from as low as 66 percent (Poland, Hungary), to well 
above 100 percent (Czech Republic), which is comparable to the level in developed 
countries (Golajewska, Wyczański, 2002, 9-10 p.). In most countries banking sector 
is relatively strongly concentrated, as a result of traditionally dominant role of 
savings banks in planned economies, as well as due to the recent mergers and 
acquisitions within banking sectors (partly stemming from mergers of strategic 
investors abroad, mainly from Italy and Austria). Role and size of the stock 
exchange in most countries is still relatively low as a source of capital, which is 
shown by the low ratio of stock market capitalization to GDP. Another important 
indicator of development of financial market is the presence and importance of IPOs 
(initial public offerings) and SPOs (secondary public offerings), which are rare in 
European transition countries. As a consequence, the banking sector plays the most 
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important role in financial intermediation. Thus, robustness and stability of banks 
seem to be crucial for further growth of the countries in question, mobilizing savings 
and utilizing them for financing investment projects. Foreign participation in 
banking sector in most European transition countries is high; the highest proportion 
is in Croatia, Czech Republic, Hungary and Poland; similar strategy of greater 
openness to foreign capital in banking is also implemented in Slovakia. 
Interestingly, despite the warnings and pressure from institutions promoting the 
liberalization process, foreign ownership is very low in Slovenia and its financial 
system is none the less sound and stable. Another common feature of European 
transition countries is the lack of empirical research about the impact of changes in 
banking regulation on their national banking sectors and economies. Furthermore, in 
the European Union not even all the members of the EU-15 countries have 
systematically conducted research on the consequences and impact of regulation 
changes on their banking sectors. Transition countries are even further behind in 
these issues. These states are all significantly lagging behind the most developed EU 
countries in many fields but especially in matters of: financial legislation, market 
discipline, insider trading, disclosure of information (financial and other), 
embezzlement, fraud and knowledge of financial instruments and markets as well as 
the associated risks. 
 
The past 10 to 15 years have been associated with significant changes in the reliance 
on risk management in a number of transition markets. In the past, the extension of 
credit in many economies reflected government guidelines or existing banking 
relationships. Institutional conditions played a large role; many banks were state-
owned or were subject to government guidelines. There was no culture of risk 
management, the government, other banks, or the profitable segments of the 
corporate networks (which were often relied upon to provide guarantees to their 
weaker partners) would provide support in case of financial difficulty. Supervisory 
oversight was formal and focused on compliance with rules rather than risk 
mitigation. The system was not transparent, and market discipline was absent or 
ineffective. The high costs of this system (financial crises, persistent losses among 
public banks) have led to significant changes. On the other hand, this system 
achieved some beneficial results, such as capital projects of great importance for 
local communities and state, that would not have been build in a strictly market 
(profit) driven economy. State-owned banks have been privatised in many countries. 
Competition has been encouraged by liberalising entry, notably by foreign banks. 
There has been more reliance on market discipline, requiring greater transparency in 
governance and accounting. Prudential oversight has shifted towards ensuring that 
financial institutions are run in a way that is conducive to financial stability, as 
opposed to ensuring compliance with rules. To varying degrees, these changes have 
increased the accountability of bank managers and their incentives to improve risk 
management. In the past 10 years, risk management units have been established in 
banks in transition market economies or their role has been strengthened, and boards 
of directors of these banks now explicitly consider risk management issues. Ongoing 
technical improvements include changes in the approach to valuation, including 
marking to market or fair value assessments, and the quantification of various risks, 
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including the use of VaR calculations and stress testing, focused on market risks and 
to some extent on credit risks; pricing and allocation of credit, as well as 
provisioning and the allocation of capital on the basis of risk assessment. There has 
been a shift towards marking to market and fair value accounting that in many cases 
is broadly consistent with international or accounting standards of developed 
countries. Implementation appears to be well advanced in some emerging markets 
while lagging in others. Many countries are taking steps to implement international 
accounting standards for fair value accounting (IAS 39). Transparent accounting is a 
prerequisite for effective risk management and the exercise of market discipline. In 
addition, it creates the right incentives for bank managers. For example, a number of 
CEEC markets have kept non-performing loans on their books for extended periods 
without recognising the losses. The implementation of IAS 39 requires banks to 
recognise these losses, creating a strong incentive to dispose of such loans.  
 
Notwithstanding these advantages, the growing adoption of fair value accounting 
raises a number of issues that have no simple answer. For example, how does the 
designated use of a financial instrument affect its measurement (e.g. a loan which is 
a hedged item in a fair value hedge and a loan which is not; debt securities held to 
maturity, held for sale and trading securities; a derivative instrument which is a 
hedging instrument in a cash flow hedge and a derivative which is not). How does 
one deal with measurement differences of instruments that differ in their legal form, 
but are similar in their economic substance (for example: loans and debt securities 
that are not traded). Another important question is how to obtain reasonable fair 
value for instruments that are priced in illiquid and shallow markets of transition 
economies, and how relevant are unrealised valuation changes, especially those that 
are not intended to be realised for a long while. Such valuation changes mean bank 
financial statements can become more volatile. This could raise regulatory capital 
requirements, and possibly lead to procyclicality. Views on how to address this last 
issue vary considerably, with some opting for deferred recognition of valuation 
changes and others stressing the importance of immediate recognition. The 
Committee of EU Banking Supervisors had introduced prudential filters that help 
limit the impact of IAS introduction on regulatory capital and presumably attenuate 
any procyclical impact at the macro level. On the other hand some central banks, 
such as the Czech National Bank, argue that the financial statement volatility 
contains important information. Czech National Bank points out that movements in 
the yield curve introduce volatility into the profit and loss statement only if a bank is 
not hedging its interest rate risk; it is appropriate to show this profit and loss 
volatility by fair value accounting. Under old accounting practices, this volatility 
was hidden. To understand the importance of market risk in modern banking in the 
transition countries it is important to determine the amount of securities that banks in 
these countries hold on their balance sheets. It is surprising that ECB or the BIS do 
not publish these figures, thus it is necessary to find these from national banking 
statistics. Because it is impossible to consistently determine across all countries 
which securities are held by the banks in banking book, and which in the trading 
book, both books are considered. In the following table 3 and figure 2 the sum of 
debt securities, shares and derivatives from both books is presented to give a feel of 
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the importance of securities in banks’ total assets. In table 3 the gross share of 
securities and their average values during the five-year period, in assets of 
consolidated balance sheet of commercial banks in transition countries 15 is 
presented. For the purpose of comparison the data for three mature economies - EU 
member states, Austria, Germany and France is also presented. 
 
Table 3 – Gross share of securities in assets of consolidated balance sheet of 

commercial banks in national economies, in the period 2001- 2005. 

Year Pol Slov Cze Hun Slo Cro Est Latv Lith Avg 

2001 16.8% 27.0% 27.8% 19.3% 28.1% 18.4% 15.8% N/A 10.6% 20.5% 

2002 16.3% 35.0% 26.0% 18.0% 34.0% 18.2% 17.3% N/A 11.8% 22.1% 

2003 16.4% 36.4% 26.4% 19.0% 34.2% 12.9% 9.4% 4.9% 10.0% 18.8% 

2004 16.2% 32.5% 26.6% 16.3% 28.9% 12.1% 8.0% 3.9% 7.2% 16.9% 

2005 14.5% 23.6% 28.3% 14.4% 28.0% 12.9% 6.9% 2.9% 5.4% 15.2% 

Avg 16.0% 30.9% 27.0% 17.4% 30.6% 14.9% 11.5% 3.9% 9.0% 18.7% 

 
 
 
 
 
 
 
 
 

Source: National central banks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
15 Excluding Malta and Cyprus for which no information about the detailed composition of 

consolidated balance sheets is available. 

Year Austria Germany France Avg 

2001 13,1% 18,5% 39,1% 23,6% 

2002 12,2% 18,0% 37,7% 22,7% 

2003 15,7% 18,5% 41,2% 25,1% 

2004 17,0% 19,9% 42,2% 26,4% 

2005 17,9% 20,7% 43,9% 27,5% 

Avg 15,2% 19,1% 40,8% 25,1% 
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Figure 2 – Gross share of securities in assets of consolidated balance sheet of 
commercial banks in transition countries (excluding Malta and Cyprus), 
in the period 2001- 2005. 
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The data from table 3 shows that in the transition countries (excluding Malta and 
Cyprus) there is a clear trend of decreasing the gross share of assets held in 
securities. In the transition countries in 2001 securities formed 20,5% of total 
banking assets, and this share fell to 15,2% in 2005. The country with the lowest 
share of securities in total banking assets (excluding Latvia, for which data for 2001 
and 2002 is not available) is Lithuania, where in period 2001-2005, securities on 
average formed only 9,0% of total banking assets. In the same period the country 
with the highest share of securities in total banking assets was Slovakia with on 
average 30,9%. On the other hand, in the developed European countries there is a 
clear trend of growth in the gross share of securities in total banking assets. The 
average value of securities in total assets for Austria, Germany and France grew 
from 23,6% in 2001 to 27,5% in 2005. In this group of countries, the country with 
the lowest share of securities in total banking assets was Austria, where in period 
2001-2005, securities on average formed 15,2% of total banking assets, but with a 
clear upward trend. In the same period the country with the highest share of 
securities in total banking assets was France with on average 40,8%. The opposite 
trends between the European transition countries and EU old member states can be, 
at least partially, explained by the cleaning of banks’ balance sheets in transition 
countries from state issued securities and sale of stakes in the companies that banks 
in transition countries obtained as collateral for bad loans during the privatisation 
and restructuring process. After this process is brought to the end it can be expected 
that European transition countries will follow the same trend that is present in the 
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developed EU member states. Given the level of securities in total banking assets in 
both the developed and transition economies it is clear that market risk management 
has a very important role in modern banking in Europe, and its importance is 
expected to grow. 
 
Although there is no study of risk management development in the banking sector of 
transition countries, surveys of the central banks of these countries and major rating 
agencies can be used to asses the situation regarding the measurement and 
management of market risk in these countries. One of the most insightful studies is 
the one conducted in 2004 by Deloitte. The Deloitte 2004 survey is based on 
responses from 162 organizations from all sectors of the financial services industry 
that varied in size from local institutions to global leaders. Out of total 162 
organizations that participated in Deloitte study, Europe was represented by 41 
participants, some of which were from European transition countries. Integrated 
financial institutions provided the greatest number of participants with commercial 
banks just behind, investment banks and other were third, and retail banks fourth. 
The survey presents a comprehensive look at global risk management practices 
across financial institutions. It addresses a range of key risk management issues 
facing these firms including: risk governance, regulatory and economic capital, 
enterprise risk management, credit risk management, market risk, asset/liability 
management, operational risk management and risk systems and technology. The 
most interesting findings for Europe as a region are (Deloitte, 2004, p. 6-7): 

• 46% of respondents cited the board of directors as having overall 
responsibility for risk management – the second highest total among the 
regions, highest Asia Pacific, South America lowest. 

• Region with the second highest proportion of respondents with a Chief Risk 
Officer (CRO) – 88%, highest South America lowest Asia Pacific. 

• 12% of respondents indicated the CRO reported to the Chief Financial Officer 
(CFO) - highest proportion of all regions. 

• 21% of firms indicated that their Enterprise Risk Management (ERM) and 
Sarbanes-Oxley (or equivalent) programs were managed separately. 

• Europe had the largest proportion of firms that calculate economic capital - 
80%. For comparison in the North America 69% of companies calculate 
economic capital, and in the South America only 51%. 

 
The Deloitte 2004 survey shows that the development of more sophisticated capital 
calculation methodologies continues, due to both business and regulatory drivers – 
primarily Basel II capital accord. Many of the market risk analyses commonly used 
build upon the seminal developments in VaR methodology of the late ‘90s. Many 
firms are continuing their developments in this area by researching new econometric 
models and adding coverage of additional products. Study participants reported an 
increased frequency of updating model volatility parameters, suggesting a more 
systematized and developed infrastructure. The frequency of stress testing also 
showed an increase, which indicates a greater attention and requirement for current 
market risk analyses. Asset/liability management also continues to build upon core 
analytics and methods in place. Professionals in this area frequently report a number 
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of practical challenges that they continue to address. Integration of various books, 
both on- and off-balance sheet positions continues to pose challenges for some. In 
addition, the proportion planning to implement simulation-based analyses increased. 
 
The overall responsibility for managing risk has been elevated in many institutions 
to the board of directors or a board level risk management committee, making it a 
focal point of governance strategy. It is clear that responsibility for risk management 
lies with the board of directors, thus suggesting an increasing trend toward vesting 
responsibility at the highest level in the organization. There is a clear distinction 
between the more advanced EU countries and new member states, where risk 
management is still not treated with attention it requires and risk management 
function is treated more as pro forma, only to satisfy the regulator. It is safe to say 
that risk management culture has not yet been fully embraced in transition countries. 
 
The composite view of financial institutions indicated a variety of organizational 
approaches to risk oversight. The current landscape reflects a continued preference 
for centralized risk management functions or a combination of centralized and 
decentralized functions. Of those that employ a decentralized approach to risk 
management, most of them were organized by risk type, then by business unit and 
by region or geographic location. The preference for one organizational form of risk 
management over another varies geographically, with European firms indicating a 
clear preference for the centralized approach and firms in North America and Asia-
Pacific showing preference for a more decentralised approach. Part of this result can 
be explained by the relative size of the firms within each region, as larger firms tend 
to favour a mix of centralized and decentralized approaches whereas smaller firms 
tend toward the centralized model. As would be expected, financial institutions in 
transition countries, under the influence of their parent companies from EU-15 
states, have adopted a strictly centralised approach to risk management. Although 
transition countries were not included in Deloitte 2002 survey in is interesting to 
note that the inclusion of transition countries in 2004 survey did not distort the 
overall picture and trends. The number of organizations with a Chief Risk Officer 
(CRO) in the EU member states continues to increase when compared to Deloitte 
study from 2002. For organizations employing a CRO, there is a noticeable trend in 
elevated reporting lines as 33% of respondents from EU indicated that the CRO 
reported to the Chief Executive Officer (CEO), 30% to the board of directors, and 
12% to a board level risk committee. The role played by the CRO continues to vary 
greatly in each institution, with the position including a mixed roster of 
responsibilities. While the majority of respondents indicated that they had a CRO or 
equivalent position, there was a range of key responsibilities attributed to the role. 
Each institution’s risk appetite and culture influences the job description of the 
CRO, and therefore it is not unusual to have some variation in the distribution of 
duties among the respondents.  
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The results of 2004 survey are consistent with those from 2002 in terms of primary 
responsibilities assigned to the CRO or independent risk oversight function: 

• Risk analytics and reporting (85% considered primary responsibility). 
• Developing controls, policies and monitoring compliance (79%). 
• Monitoring of risk exposure versus limits (74%). 
• Independent verification of risk methodologies (70%). 

 
Deloitte 2004 survey results pertaining to market risk suggest that most respondents 
currently use the Standard Approach to measuring their regulatory capital, and the 
simulation VaR is the least represented, as can be seen from figure 3.  
 
Figure 3 - Current and planned approaches to calculating market risk regulatory 

capital 

 
Source: Deloitte: 2004 Global risk management survey, 2004, p. 15. 
 
Given the relative maturity of the market risk measurement area, a significant 
number of respondents already have internal capabilities for measuring market risk 
on a VaR basis (primarily through the most basic parametric VaR or a simulated 
historical VaR measure), or are planning to develop these capabilities. Although 
some respondents currently feel they have the capability of using a pure simulated 
VaR approach or are planning to use this sophisticated approach, the clear majority 
of respondents (72%) do not intend to use these means of market risk measurement. 
This is a very disappointing finding because it shows that a part of financial 
institutions have not yet adopted even the most simple and rudimentary risk 
measurement models.  
 
The question whether this can be attributed to lack of interest by firm’s 
management, lack of skilled and educated employees, or something else, is still 
unanswered.    Several financial institutions have implemented internal economic 
capital models of varying sophistication and granularity over the last decade. 
Deloitte 2004 survey results suggest that the sophistication and level of use of these 
economic capital methodologies vary considerably across respondents as shown in 
figure 4. 
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Figure 4 - Uses of economic capital measurements 

 
Source: Deloitte: 2004 Global risk management survey, 2004, p. 16. 
 
For the most part, respondents believe they have the ability to calculate economic 
capital at an enterprise-wide level. Respondents also appear to understand the role of 
enterprise-wide economic capital results and its use for capital allocation, as an 
overwhelming 91% use or plan to use economic capital for these purposes. Deloitte 
results also show that firms seem to understand the benefits of an economic capital 
model that can support more granular or transaction level assessment. While only 
one third of the respondents currently use economic capital model results for 
product-based decision making, roughly the same proportion plan to implement this 
ability in the future. Similarly, 32% and 30% of respondents, respectively, intend to 
use economic capital based results for customer level and transaction level 
profitability/pricing. Another interesting aspect of economic capital framework is 
the types of risks that are included. As figure 5 shows, almost all respondents who 
calculate economic capital include credit and market risks within their frameworks.  
 
Figure 5 - Types of risks included in economic capital framework 

 
Source: Deloitte: 2004 Global risk management survey, 2004, p. 16. 
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The presented results are consistent with the Risk management survey conducted by 
PricewaterhouseCoopers in November 2002, which are presented in table 4. 
 
Table 4 - Enterprise risk management programme priority for year 2002 (2001 

ranking is given in parentheses) 
1  Credit (1) 
2  Market (2) 
3  Operational (3) 
4  Treasury/Liquidity Planning (4) 
5  Changing Regulations (5) 
6  Insurance/Business Continuity (6) 
7  Rogue Trader/Fraud (8) 
8  E-business Security (7) 
9  Sovereign/Political (10) 

10  Key Pearson Retention (9) 
11  Restatement of Financial Results (11) 
12  Pension Surplus (12) 

Source: PricewaterhouseCoopers: Risk management survey, 2002, p. 5. 
 
These results aligns well with the emphasis being currently placed on these risk 
types by the Basel II Framework as well as the more advanced risk measurement 
techniques available for these risks.  
 
Market risk management methodology and techniques are fairly well developed 
within limited number of financial institutions. The trend of increasing 
sophistication in market risk management frameworks is present across the banking 
landscape. With a few notable exceptions, there is continued development and 
implementation of these methodologies, as they are applied to new asset classes, 
new market and industry sectors, and to new players within the banking industry.  
 
Consistent with many institutions’ initial modelling of plain vanilla instruments 
within VaR analytics, it comes as no surprise that fixed income and foreign-currency 
are the assets most broadly covered among survey participants (figure 6). 
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Figure 6 - Market risk VaR coverage 

 
Source: Deloitte: 2004 Global risk management survey, 2004, p. 25. 
 
This finding is consistent with the last Deloitte’s survey results from 2002, although 
the transition countries were not included in 2002 survey. 2004 survey findings 
reveal substantial variation among asset classes with respect to the coverage of more 
structured products. This may be due, at least partially, to the fact that not all survey 
members actively trade these products globally. Asset backed securities and equities 
products are covered by over half the participants. Coverage of asset backed 
securities products within VaR portfolios recorded the largest increase, relative to all 
other asset classes (from 48% to 55%, relative to 2002 survey results). Less than a 
quarter of the companies currently cover commodities, energy, and catastrophe 
instruments within their VaR portfolios.  
 
Incorporation of event risk into VaR calculations generally increased from 2002 to 
2004. As it visible from figure 7, deterministic stress testing scenarios (65%) remain 
the most popular and widely used method.  
 
Figure 7 - Methods for incorporating event risk into VaR analytics 

 
Source: Deloitte: 2004 Global risk management survey, 2004, p. 26. 
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A greater number of 2004 survey participants are using Extreme Value Theory 
(doubling from 8% to 16%) and fat-tailed statistical models (from 16% to 23%), 
however responses indicating future plans to incorporate these methods were less 
than half of what they were in the 2002 survey. This decline may be due to a variety 
of reasons such as a shift in the population from planning to actual implementation, 
potential loss of interest in these methods or reluctance to initiate new projects at 
this time. The drop in institutions planning to use jump diffusion models may in part 
be due to institutions downsizing their trading activity in energy and commodity 
markets, where these models are currently more commonly used. This interpretation 
would be consistent with observations made on asset coverage within VaR models. 
Participants seem to be updating their models on a more frequent basis since the 
2002 survey. Firms updating volatility data sets on a weekly basis increased from 
10% to 15%. Firms with monthly updates have increased by 13% to 29%. Annual 
updates (8%) of market volatility models are now conducted by the smallest 
percentage of participants. The results of the earlier surveys and other industry 
surveys have indicated that the use of stress testing continues to be quite common 
among practitioners. Concerning the use of stress test analysis, as shown in figure 8 
the majority of respondents reported that they use it for reporting to senior 
management (80%), and for gaining an understanding of the firm’s risk profile 
(68%).  
 
In transition countries incorporation of event risk into VaR analytics is practically 
non-existent. Use of stress testing is not wide spread, and is used almost exclusively 
for reporting to the regulator, and not for asset allocation. 
 
Figure 8 - Use of stress testing results 

 
Source: Deloitte: 2004 Global risk management survey, 2004, p. 26. 
 
These results may be due to the more intuitive nature of stress test analysis rather 
than the somewhat more statistical Value-at-Risk measure. In addition, the 
proportion of respondents using stress test analysis to set limits and as a trigger for 
further analysis remains high (63% for both). A finding regarding potential trends is 
that the proportion of respondents planning to use stress tests to allocate economic 
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capital increased from 23% to 33% since the 2002 survey. One notable difference 
from 2002 survey was the stress testing frequency results shown in figure 9.  
 
Figure 9 - Frequency of stress testing for different books 

 
Source: Deloitte: 2004 Global risk management survey, 2004, p. 26. 
 
Whereas the most frequently chosen response was previously to conduct stress 
testing on an annual basis, 2004 responses indicate that monthly stress testing is the 
most frequently chosen response (the trading book is the lone exception with 37% of 
respondents stress testing this book on a daily basis and 30% performing these 
procedures monthly). Stress testing of the emerging market book showed the 
greatest increase in frequency as the number of respondents who stress test this book 
on a daily basis has increased from 6% to 22%. This overall migration to higher 
stress testing frequency is also demonstrated in the increase in daily responses across 
all books (from 2% to 19%). 
 
Due to the lack of information concerning the risk measurement and management in 
banks operating in transition countries it is very hard to determine the level of 
market risk the banks in these countries are exposed to as well as the adequacy of 
the methods they use in the measurement of these risks. Basel Committee in 
cooperation with several central banks has conducted surveys of commercial banks 
operating in these countries, regarding their risk measurement and management 
(Basel Committee on Banking Supervision, 2006, Galac, Dukić, 2005). 
Unfortunately, even in these specialised studies, the data regarding market risk is 
very scarce. From the available data that is disclosed in central banks’ studies and 
interviews with the risk managers from leading banks in the region one may 
conclude that market risk management is in its early beginnings in transition 
countries. Most of the survey participants are concerned with implementing Basel II 
capital accord, especially procedures for measurement of operational and market 
risks. In August of 2006 BIS published a study “The banking system in emerging 
economies: how much progress has been made?” covering risk management 
practices in emerging economies. The study is very indicative of the current 
situation, since it also includes some of the transition countries. Especially 
interesting is the paper by Ramon Moreno “The changing nature of risks facing 
banks” where a survey of central banks regarding risk management practices in their 
countries is analysed. In this study a number of questionnaire respondents noted that 
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the growth in bank trading books has increased exposure to market risk in a number 
of economies; such risk was generally not considered significant and was not 
analysed ten years ago. However, exposure to market risk is in many cases still quite 
small. To illustrate the range of exposures, in Korea marketable securities grew 21% 
in 2004, to reach over 14% of total assets. In Mexico, about 75% of the total risk of 
financial institutions, as measured by VaR, can now be traced to market risk (from 
positions that are sensitive to interest rate fluctuations); ten years ago the main 
source of risk was credit risk (Moreno, 2006, p. 71-72). In the Czech Republic, 
capital requirements for market risks (trading book, including capital requirements 
for the credit risk of the trading book) have almost doubled over the last five years; 
however, they still comprise less than one tenth of the capital requirements for the 
banking book (credit risk). In Poland, the direct market risk to banks is considered 
small. In Poland’s case this is because banks tend to have closed positions in foreign 
currencies, and floating interest rates apply to both long-term deposits and loans. 
Risk on the trading book from fluctuations in interest rates is particularly important 
in some countries where government securities form a significant part of banks’ 
assets (Moreno, 2006, p.72). In a number of countries, these holdings have been a 
large source of trading profits when interest rates were falling but have resulted in 
losses when rates rose. Stress tests revealed that banking systems’ exposure to this 
type of risk is also significant in other emerging markets, whether due to holdings of 
government or private securities. In contrast to past episodes in which currency 
depreciation was the main concern, there could be risks in possible currency 
appreciation in countries where foreign currency holdings are significant as is the 
case in all of the transition countries. 
 
All of the transition countries adopted the directives for measuring market risk and 
backtesting internal models published by Basel Committee for Banking Supervision 
in Amendments from 1996 (updated in 2005). Survey conducted by Croatian 
National Bank (Galac, Dukić, 2005) showed the same characteristics as those in 
transition countries. Based on the overall results it can be concluded that: 

1) There are huge differences within national economies regarding the level of 
knowledge about risk management and Basel II standards for measuring and 
managing risks. Foreign owned banks are better versed in this subject 
compared to domestic banks that are significantly lagging. 

2) Significant differences can be seen in the actual preparation for the full 
implementation of Basel guidelines. Foreign owned banks – under the 
pressure from their parent companies have started adopting the internal 
models for measurement of financial risks provided by their parent companies. 
Smaller, domestic banks rely on the standardized approach prescribed by the 
Basel Committee and national central banks.  

3) The largest banks are preparing for the adoption of the most advanced – 
internal models of measuring all financial risks, probably because of already 
developed methodology for implementing risk measurement and management 
systems.  
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Conducted surveys reveal that most of the middle and smaller size banks do not 
even have a risk management department. It is worrisome that even larger banks 
have understaffed risk management departments and lack managers in charge of 
every aspect of financial risk. Besides the problem of understaffed risk management 
department, another serious problem is the dubious quality and lack of knowledge 
and skill of current employees. As expected, only the largest banks provided data 
concerning market risk measurement. Most of these banks calculate the daily and 
monthly VaR figures, and only a smaller part of these banks already use VaR 
forecasts to set limits to trading desks. Even in these banks VaR is not calculated for 
all market risks, usually it is only FX and equity risk. For most banks, using VaR 
estimates to calculate economic capital and capital requirements is in the medium 
term plans. Despite the positive attitude of the banks towards VaR as a measure of 
risk, when considering the number of banks that actually calculate VaR and those 
that plan to use it as means to calculating capital requirement, this seams more like a 
reflection of the bank management’s desire than the actual plan. While the extent to 
which more market-oriented or sophisticated risk management tools have been 
adopted varies considerably, the good news is that the use of such tools now appears 
to be a more common part of banking practice in emerging markets, at least for 
bigger banks. Risk management techniques used by the banks in the emerging 
economies are illustrated in figure 10.  
 
Figure 10 - Risk management techniques used by the banks in the emerging 

economies 

 
Respondents comprise Chile, China, Colombia, the Czech Republic, Hong Kong SAR, 
Hungary, Indonesia, Korea, Malaysia, Mexico, the Philippines, Poland, Russia, Saudi 
Arabia, Singapore, Thailand and Turkey. 
 
Source: Moreno Ramon: The changing nature of risks facing banks. in “The banking system 

in emerging economies: how much progress has been made?”. BIS papers No. 28, 
Aug 2006. 75 p. 
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In about 40% of responding countries there has been full or extensive adoption of 
marking to market, VaR (typically of market risks), stress testing, and reliance on 
credit default information or credit bureaus.  
 
An interesting indicator of the establishment of VaR as a risk measurement standard 
and the preparedness of the banks to fully implement Basel II capital accord is the 
fact that only a small fraction of the banks have gained approval from the national 
regulator to use the internal approach to calculate capital requirements. 
 
It is clear that banks in transition markets are adopting more advanced techniques for 
risk assessment, such as VaR, stress testing and credit scoring. Underlying this have 
been sustained efforts by financial institutions in many emerging market economies 
to introduce functional risk management groups as well as large improvements in IT 
infrastructure needed to handle up-to-date valuation and risk measurement 
requirements. In a number of economies, risk assessment is now used as the basis 
for daily transactions, and to improve such risk management practices, as limits to 
different positions. Three problematic areas in implementing more sophisticated risk 
assessment techniques may be highlighted: 
 
Data issues. Modern techniques of risk management, reflected in the 
methodological approach of 1996 market risk Amendments and Basel II, involve the 
estimation of model parameters from longer time series. Banks often lack sufficient 
data on historical prices and rates. Foreign banks get around the problem by relying 
on data from their home country operations, but these data might not be entirely 
applicable to the transition countries.  
 
Expertise. Banks also lack suitable techniques for designing and calibrating models 
to evaluate alternative scenarios. Measures of VaR or market risk are sometimes not 
standardised, and it is difficult to verify the economic validity of estimated values. 
 
The human resources and infrastructure (IT and other) costs of implementing 
advanced techniques of risk assessment can be very large. 
 
The reason for not implementing more sophisticated, market specific VaR models 
can often be attributed to plain overconfidence of parent companies in their VaR 
models without testing them in transition markets. Such overconfidence could result 
in serious losses for banks’ portfolios that might go undetected by used VaR models 
until it is too late. The critiques on choice of model parameters discussed earlier are 
even more pronounced in transition countries where the volatility of the financial 
instruments is far greater than in developed markets. A study by Soczo (2001) has 
shown than in Hungarian capital market the banks would be required to hold as 
much as three times greater capital requirements for market risk when calculated by 
an internal model as opposed to the basic building-block approach (Soczo, 2001, p. 
65-66).  
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3 MEASURING MARKET RISK VIA VALUE-AT-RISK 
(VAR) METHODOLOGY 

 
 
Recent financial disasters in financial, non-financial firms and governmental 
agencies stress the need for various forms of risk management.  Financial 
misadventures are hardly a new phenomenon, but the rapidity with which economic 
entities can get into trouble is. Banks and similar financial institutions need to meet 
forthcoming regulatory requirements for risk measurement and capital. However, it 
is a serious error to think that meeting regulatory requirements is the sole or even the 
most important reason for establishing a sound, scientific risk management system. 
Managers need reliable risk measures to direct capital to activities with the best 
risk/reward ratios. They need estimates of the size of potential losses to stay within 
limits imposed by readily available liquidity, by creditors, customers, and regulators. 
They need mechanisms to monitor positions and create incentives for prudent risk-
taking by divisions and individuals. Risk management is the process by which 
managers satisfy these needs by identifying key risks, obtaining consistent, 
understandable risk measures, choosing which risks to reduce and which to increase 
and by what means, and establishing procedures to monitor the resulting risk 
position.   
 
  
3.1 Approaches to measuring market risk 
 
There are significant differences in the internal and external views of what is a 
satisfactory market risk measure. Internally, bank managers need a measure that 
allows active, efficient management of the bank's risk position. Bank regulators 
want to be sure a bank's potential for catastrophic net worth loss is accurately 
measured and that the bank's capital is sufficient to survive such a loss. Both 
managers and regulators want up-to-date measures of risk. For banks active in 
trading, this may mean selective intraday risk measurement as well as a daily 
measurement of the total risk of the bank. Intraday measures that are relevant for 
asset allocation and hedging decisions are measures of the marginal effect of a trade 
on total bank risk and not the stand-alone riskiness of the trade. Regulators, on the 
other hand, are concerned with the overall riskiness of a bank and are less concerned 
with the risk of individual portfolio components. Nonetheless, given the ability of a 
sophisticated manager to "window dress" a bank's position on short notice, 
regulators might also like to monitor the intraday total risk. As a practical matter, 
they probably must be satisfied with a daily measure of total bank risk.  
 
The need for a total risk measure implies that risk measurement cannot be 
decentralized. For parametric measures of risk, such as standard deviation, this 
follows from the theory of portfolio selection (Markowitz, 1952) and the well-
known fact that the risk of a portfolio is not, in general, the sum of the component 
risks. More generally, imperfect correlation among portfolio components implies 
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that simulations of portfolio risk must be driven by the portfolio return distribution, 
which will not be invariant to changes in portfolio composition. Finally, given costly 
regulatory capital requirements, choices among alternative assets require managers 
to consider risk/return or risk/cost trade-offs where risk is measured as the change in 
portfolio risk resulting from a given change in portfolio composition. The 
appropriate risk scaling measure depends on the type of change being made. For 
example, the pertinent choice criterion for pure hedging transactions might be to 
maximize the marginal risk reduction to transaction cost ratio over the available 
instruments while the choice among proprietary transactions would involve 
minimizing marginal risk per unit of excess return. Risk measurement is costly and 
time consuming. Consequently, bank managers compromise between measurement 
precision on the one hand and the cost and timeliness of reporting on the other. This 
trade-off will have a profound effect on the risk measurement method a bank will 
adopt. Bank regulators have their own problem with the cost of accurate risk 
measurement, which is probably one reason they have chosen to monitor, and stress 
test bank risk measurement systems rather than undertaking their own risk 
measurements.   
 
Bank regulators have a singular risk measurement goal. They want to know, to a 
high degree of precision, the maximum loss a bank is likely to experience over a 
given horizon. They then can set the bank's required capital (i.e. its economic net 
worth) to be greater than the estimated maximum loss and be almost sure that the 
bank will not fail over that horizon. In other words, regulators should focus on the 
extreme tail of the bank's return distribution and on the size of that tail in adverse 
circumstances. Bank managers have a more complex set of risk information needs. 
In addition to shared concerns over sustainable losses, they must consider risk/return 
trade-offs. That calls for a different risk measure than the "tail" statistic, a different 
horizon, and a focus on more usual market conditions. Furthermore, even when 
concerned with the level of sustainable losses, the bank manager may want to 
monitor on the basis of a probability of loss that can be observed with some 
frequency (e.g. over a month rather than over a year) (Pyle, 1997, p. 6-7).  
 
There are four common approaches to measuring market risk (Marrison, 2002, p. 
88):  

1) Sensitivity analysis 
2) Stress testing 
3) Scenario testing 
4) Value at Risk (VaR) 

 
3.1.1.1 Sensitivity analysis 
 
Sensitivity analysis is a useful measure to quickly show how changes in the 
portfolio’s value depend on the bank’s position. Position is a general term used to 
describe the composition of the assets and liabilities in the portfolio. Sensitivity 
analysis is a description of how much of a portfolio’s value (V) is expected to 
change if there is a small change in one of the market-risk factors (f). The market-
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risk factors are market variables from which the value of all other instruments can be 
derived. The main risk factors are: interest rates, credit spreads, equity prices, 
exchange rates, implied volatility, commodity prices and forward prices for each of 
these factors. There are three distinct but equivalent ways of thinking about 
sensitivity: it is the relative change, the first derivative, or the best linear 
approximation (Marrison, 2002, p. 88). 
 
The relative change is the change in value of the portfolio when a risk factor 
changes by a small amount (ε), divided by the change in the risk factor (Marrison, 
2002, p. 89): 
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The first derivative is the calculus extreme of the relative change when ε tends to 
zero: 
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The linear approximation is the sensitivity that best satisfies the following equation: 
 
V(f + ε) = V(f) + ε  x  Sensitivity   (3.3) 

 
The sensitivity to equity prices of a portfolio containing equity from a single issuer 
is simply the number of equities being held (N) multiplied by the change in the value 
of a share (S): 
 
V = N x S 
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Extending the logic, in a portfolio composed of various equities the sensitivity with 
respect to each company's share price should be calculated, but this creates too much 
data to be analysed easily. A commonly used alternative is to look at how the value 
of the portfolio changes with a general market change. This analysis has three steps. 
The first is to describe each equity's value in terms of its beta, i.e., the extent to 
which its price tends to change when the general market changes. This is found from 
the historical covariance between the stock price and market price. The equity's 
value, at current market level (M0), is then described as being the current value (S0), 
plus beta times the market change, plus a random idiosyncratic change (ε) 
(Marrison, 2002, p. 90): 
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The second step is to differentiate the equation for value with respect to the market 
level. 
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The final step is to sum the sensitivity to the market for all the equities in the 
portfolio.  
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where P is the total number of different equities in the portfolio, and Vp is the value 
of the portfolio.  
 
Equation 3.7 gives the expected change in the value of the portfolio if the general 
market changes. For example, if the market falls by p%, the portfolio is expected to 
lose (Marrison, 2002, p. 91): 
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The sensitivity analyses give decent approximations for the change in the value of 
the portfolio when the change in the market-risk factors is small. However, if the 
change in a risk factor is large (e.g., in a crisis), the linear sensitivity will not give a 
good estimate to the change in the value of a portfolio. 
 
3.1.1.2 Stress testing 
 
In stress testing, large changes are made in the risk factors, and full, nonlinear 
pricing is used to revalue the portfolio and estimate the loss. The purpose of stress 
testing is to provide a clear, objective measure of risk that is easily understood by 
everyone. This approach has the additional advantage of not requiring a 
distributional assumption for the risk calculation.  For stress testing, a standard set of 
changes in the risk factors is set, and the subsequent change in portfolio value is 
calculated. For example, a typical stress statement would be "If interest rates move 
up by 2%, the company is expected to lose €12 million; if they move by 4%, it 
would lose €23 million". Typically, the movements are standardized in order to 
communicate them easily throughout the organization. For example, the changes in 
all equity values may be set at -20%, -10%, and +10% and +20% (McNeil, Frey, 
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Embrechts, 2005, p.36). Deciding which factors should be moved together to 
analyze the results more easily is called "blocking." One example of blocking is to 
move all transition country’s exchange rates at the same time rather than having one 
result for each currency. However, one downside of exchange-rate blocking is that 
the gains from one currency would perfectly offset losses from another. Therefore, 
there is no indication of the loss that would occur if the rates moved differently. 
Usual steps required to construct a stress test are (Marrison, 2002, p. 93): 

1. Determining the complete set of market factors that could affect the value of 
the portfolio. 

2. Deciding which factors should be blocked together or moved independently; 
e.g., a Croatian bank would probably block together all its exposures to 
Asian currencies because they would be a small part of the portfolio, and 
analyzing them individually would distract management from the main 
sources of risk. 

3. Deciding what approximate change is a reasonable test for each factor. Four 
or six times the standard deviation of daily movements for each factor 
would be reasonable. 

4. Applying the price movements. 
5. Revaluating all positions affected by the risk factor. For example, a change 

in FX will affect FX spots, forwards, swap options, and the value of the 
holdings of foreign equities. Using full, nonlinear pricing models to revalue 
the portfolio. For example, changes in option values should be calculated 
using a full option pricing model and not just the Greeks. 

6. Reporting the change in present value. 
 
It should be clear that stress testing can provide regulators with the desired lower tail 
estimates, but is of limited use in day-to-day risk management.  Even for the 
regulators, reliance on a given scenario carries the risk of establishing a last line of 
defence against a catastrophic event. While stress testing is generally helpful, there 
are three main drawbacks (Marrison, 2002, p. 95): 

1. The test can yield a lot of data without directly indicating which result 
represents the most significant problem. 

2. The chosen moves in the risk factors are not tightly related to a probability 
of movement. 

3. The test makes the simple assumption that the correlation between the 
movements in different risk factors is zero or one; i.e., they move 
independently or in lockstep. This can mask potentially serious losses that 
could occur if one rate moved slightly differently from another rate. For 
example, a Croatian bank is holding an FX forward in which it is paying 
Croatian kunas and receiving pounds sterling and a swap in which it will 
receive the same amount of Croatian kunas and pay euros. If sterling and the 
euro were blocked together, when different rates were tested, any estimated 
loss on one trade would be offset by gains on the other, and it would appear 
that the overall portfolio had no risk. However, if the sterling and euro rates 
were to move separately, there could be considerable losses. 
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3.1.1.3 Scenario testing 
 
Scenario testing is one approach to avoid some drawbacks of stress testing. Stress 
testing and scenario testing are similar in that both use specified changes in the 
market-risk factors and reprice the portfolio with full, nonlinear pricing models. 
However, in stress testing, the changes in risk factors are very uniform and 
objective. In scenario testing, the changes are tailored and subjectively chosen. In 
scenario testing, informed opinion is used to create a limited set of worst-case 
scenarios. Each scenario corresponds to a specific type of market crisis, such as 
equities market crashes, a default by a major bond issuer, or the raising of oil prices. 
Typically, 5 to 10 "worst-case" scenarios are chosen. The scenarios are typically 
derived from one of three sources: previous crises, the bank's current portfolio, and 
the opinion of bank's experts such as the head trader, bank economists, and the risk 
management group. In using previous crises, the risk management group looks at 
historical data from many markets and asks: what if those events were to happen 
here and now? For example, if a 20% one-day drop in the U.S. market happened in 
1987, one scenario could be that the same happens for all the euro markets 
(Marrison, 2002, p. 95). In basing the scenarios on the current portfolio, the bank's 
experts look at the current state of the portfolio and ask: what event would be most 
damaging to us given this portfolio? Basing the scenarios on the bank's expert 
opinion allows the bank's staff to test their greatest worries given their knowledge of 
the current economy and market. Once each scenario has been chosen, it is then 
necessary to estimate how all of the risk factors would change in that scenario. For 
example, a crash in the Croatian equities market would affect Croatian interest rates, 
neighboring equity markets, exchange rates, and all the other factors. By moving all 
the risk factors, the scenario implicitly includes all the correlations between risk 
factors. Meaningful scenario analysis is dependent on having valuation models that 
are accurate over a wide range of input parameters, a characteristic that is shared to a 
considerable extent by VaR models. Research on capital asset pricing (Sharpe, 
1964), option pricing (Black, Scholes, 1973, Merton, 1973), and term structure 
modelling (Vasicek, 1977) has provided the basic tools for valuation models, but 
unfortunately they are still far from being perfect.  
 
Usual steps required to create and use a scenario analysis are (Marrison, 2002, p. 
96): 

1. Choosing 5-10 scenarios that would upset the markets in which the bank 
trades. Estimating the changes in each risk factor based on the crisis 
scenarios the bank has identified. This estimation can be based on expert 
opinion and/or historical data from previous crises. 

2. Revaluating the portfolio under the given scenario using full, nonlinear 
pricing models. 

3. Testing the portfolio each day to see how much could be lost under each 
scenario. 

4. Reviewing and updating the scenarios quarterly, or more often if events 
dictate. 
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While scenario analysis is generally helpful, there are four major drawbacks 
(Marrison, 2002, p. 96): 

1. Its proper implementation is time-consuming. 
2. Only a limited number of scenarios can be tested. 
3. The values chosen are very subjective. 
4. There is the potential for conflict of interest, as the person taking the risk 

and making the trade is often the expert who is asked to provide the worst-
case scenario. 

 
3.1.1.4 Value at Risk (VaR) 
 
One of the most important developments in risk management over the past few 
years has been the implementation of a new class of risk measures that are 
specifically designed to measure and aggregate diverse risky positions across an 
entire institution using a common conceptual framework. Although these measures 
come under any one of many different institution-specific guises (e.g. Bankers 
Trust's Capital at Risk (CaR), J.P. Morgan's Value at Risk (VaR) and Daily 
Earnings at Risk (DEaR), other institutions' Dollars at Risk (DaR) and Money at 
Risk (MaR)), they all have as their foundation a common definition comprising 
three elements: VaR is generically defined as the maximum possible loss for a 
given position or portfolio within a known confidence interval over a specific time 
horizon (Alexander, 2000, p. 61).  
 
Graphical representation of VaR concept can be seen in figure 11. 
 
Figure 11 - Value at Risk 
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Probably the most broadly accepted definition of VaR is given by Linsmeier and 
Pearson (2000, p. 48): 

VaR 

Loss Probability 
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“Value at risk is a single, summary, statistical measure of possible portfolio losses. 
Specifically, value at risk is a measure of losses due to “normal” market 
movements. Losses greater than the value at risk are suffered only with a specified 
small probability. Subject to the simplifying assumptions used in its calculation, 
value at risk aggregates all of the risks in a portfolio into a single number suitable 
for use in the boardroom, reporting to regulators, or disclosure in an annual report. 
It is simply a way to describe the magnitude of the likely losses on the portfolio”. 
 
 
3.2 Development of Value-at-Risk methodology 
 
Early VaR measures developed along two parallel lines. One was portfolio theory, 
and the other was capital adequacy computation. Markowitz (1999) and Holton 
(2002) have documented the history of VaR measures in the context of portfolio 
theory.  
 
The origins of portfolio theory can be traced to non-mathematical discussions of 
portfolio construction. Papers by authors such as Hardy from 1923 and Hicks from 
1935 discussed intuitively the merits of diversification. Leavens in his paper from 
1945 offered a quantitative example, which may be the first VaR measure ever 
published. Writing for a non-technical audience, Leavens did not explicitly identify 
a VaR metric, but he mentioned repeatedly the “spread between probable losses and 
gains” (Holton, 2002, 2 p.)  
 
Markowitz (1952) and Roy (1952) independently published VaR measures that were 
surprisingly similar. Each was working to develop a means of selecting portfolios 
that would, in some sense, optimise reward for a given level of risk. For this 
purpose, each proposed VaR measures that incorporated covariances between risk 
factors in order to reflect hedging and diversification effects. While the two 
measures were mathematically similar, they supported different VaR metrics. 
Markowitz (1952) used a variance of simple return metric. Roy (1952) used a metric 
of shortfall risk that represents an upper bound on the probability of the portfolio’s 
gross return being less than some specified “catastrophic return.” 
 
Both Markowitz (1952) and Roy (1952) did not explore in depth the issue of how 
probabilistic assumptions might be specified. Roy’s VaR measure required a mean 
vector and covariance matrix for risk factors that were conditioned on their past 
values. Markowitz’s VaR measure required only a covariance matrix for risk factors.  
 
Markowitz (1952) and Roy (1952) intended their VaR measures for practical 
portfolio optimisation work. Markowitz was aware of this problem and proposed a 
more tractable VaR measure that employed a diagonal covariance matrix. William 
Sharpe described this VaR measure in his paper from 1963. The measure was in 
different form, but helped motivate Sharpe’s (1964) Capital Asset Pricing Model 
(CAPM). 
 



Chapter 3 Measuring market risk via Value-at-Risk (VaR) methodology   73 

 

Because of the limited availability of processing power, VaR measures from this 
period were largely theoretical, and were published primarily in the context of the 
emerging portfolio theory. This encompassed the work of Tobin (1958), Sharpe 
(1964), Lintner (1965) and Mossin (1966). The VaR measures they employed were 
best suited for equity portfolios. There were few alternative asset categories, and 
applying VaR to these would have raised a number of modelling issues. For 
example, applying VaR to either debt instruments or futures contracts entails 
modelling term structures. Also, debt instruments raise issues of credit spreads. 
Futures that were traded at the time were primarily for agricultural products, which 
raise seasonality issues.  
 
Lietaer in his paper from 1971 described a practical VaR measure for foreign 
exchange risk. He wrote during the waning days of fixed exchange rates when risk 
manifested itself as currency devaluations. Since World War II, most currencies had 
devalued at some point; many had done so several times. Governments were 
secretive about planned devaluations, so corporations maintained ongoing hedges. 
Lietaer proposed a sophisticated procedure for optimising such hedges. It 
incorporated a VaR measure with a variance of market value VaR metric. It assumed 
devaluations occurred randomly, with the conditional magnitude of a devaluation 
being normally distributed. Computations were simplified using a modification of 
Sharpe’s (1963) model. Lietaer’s work may be the first instance of the Monte Carlo 
method being employed in a VaR measure (Holton, 2002, 4 p.). 
 
The 1970s and 1980s wrought sweeping changes for markets and technology. For 
VaR, these had the combined effect of: 
•  expanding the universe of assets to which VaR might be applied; 
•  changing how organizations took risk; and 
•  providing the means to apply VaR in these new contexts. 
 
Perhaps the greatest consequence of the financial innovations of the 1970s and 
1980s was the proliferation of leverage. Prior to 1970, avenues for compounding 
risk were limited. With the proliferation of new instruments, opportunities for 
leverage abounded. Not only new instruments, but new forms of transactions also 
offered leverage. Commodity leasing, securities lending, repos and short sales are 
leveraged transactions. All of these either did not exist or had limited use prior to 
1970. Within organizations, leveraging decisions became decentralized. Portfolio 
managers, traders, product managers and even salespeople acquired the tools of 
leverage. As leverage proliferated, trading organizations sought new ways to 
manage risk taking. In turn, this motivated a need for new measures of risk. The 
traditional risk metrics of financial accounting were ineffective, especially when 
applied to derivatives. Exposure metrics such as duration, convexity, delta, gamma, 
and vega were widely adopted, but were primarily of tactical value. Supervising 
trading activities within a company became almost impossible, with each trading 
desk adopting risk metrics suitable for its own transactions. Even when two desks 
adopted similar metrics, there was no means of measuring their aggregate risks. 
Organizations increasingly needed a single risk metric that could be applied 
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consistently across asset categories. 
 
By 1990, a single processor could easily perform the most complex analyses 
proposed by Markowitz (1952). The age of the mainframe was waning. Personal 
computers were ascendant. Financial firms were embracing technology and were 
using it for such tasks as Monte Carlo pricing of complex derivatives. Another 
important development was the rapid growth of a financial data industry. Reuters, 
Telerate, Bloomberg and more specialized firms started compiling databases of 
historical prices. These would provide the raw data needed to specify probabilistic 
assumptions used by VaR measures. 
 
As the 1970s turned to the 1980s, markets were becoming more volatile. Firms were 
becoming more leveraged, and the need for financial risk measures, such as VaR, 
was growing. The resources to implement VaR were becoming available, but VaR 
remained primarily a theoretical tool of portfolio theory. Firms needed some way to 
measure market risk across disparate asset categories, but did not recognized how 
VaR might fill this need. US regulators were laying the groundwork for them to do 
so. 
 
By 1993, a fair number of financial firms were employing proprietary VaR measures 
to assess market risk, allocate capital or monitor market risk limits. The measures 
took various forms. The most common approach generally followed Markowitz 
(1952). A portfolio’s value would be modelled as a linear polynomial of certain risk 
factors. A covariance matrix would be constructed for the risk factors, and from this, 
the standard deviation of portfolio value would be calculated. If portfolio value were 
assumed normal, a quantile of loss could be calculated. Thomas Wilson was 
working as a project manager for McKinsey & Co. Wilson’s 1993’ paper represents 
the first published attempt to reflect leptokurtosis and heteroskedasticity in the 
practical VaR measures used on trading floors (Holton, 2002, 17 p.). It is also the 
first detailed description of a VaR measure for use in a trading environment. The 
author’s casual assumption that readers are familiar with the use of VaR measures 
on trading floors is indicative of how widespread such use had already become. 
Without acknowledging his doing so, Wilson also touched on a philosophical issue 
of some practical importance. He suggested that the covariance matrix for risk 
factors actually exists, but that a user may have limited knowledge as to its values. 
This objective interpretation of the underlying probabilities runs counter to 
Markowitz’s (1952) subjective approach, which suggests that the covariance matrix 
does not actually exist, but is constructed by the user to reflect his own perceptions. 
 
In 1990’s, risk management was novel. Many financial firms lacked an independent 
risk management function. This concept was practically unheard of in non-financial 
firms. As unease about derivatives and leverage spread, this started to change. The 
term “risk management” was not new. It had long been used to describe techniques 
for addressing property and casualty contingencies. Holton (2002) traces such usage 
to the 1960s and 1970s when organizations were exploring alternatives to insurance, 
including: 
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• risk reduction through safety, quality control and hazard education, and 
• alternative risk financing, including self-insurance and captive insurance. 

 
Such techniques, together with traditional insurance, were collectively referred to as 
risk management. More recently, derivative dealers were promoting risk 
management as the use of derivatives to hedge or customize market-risk exposures. 
For this reason, derivative instruments were sometimes called risk management 
products. The new risk management that evolved during the 1990’s is different from 
either of the earlier forms. It tends to view derivatives as a problem as much as a 
solution. It focuses on reporting, oversight and segregation of duties within 
organizations. In the summer of 1992, Paul Volker, chairman of the Group of 3016 
approached Dennis Weatherstone, chairman of JP Morgan, and asked him to lead a 
study of derivatives industry practices. Weatherstone formed an international 
steering committee and a working group of senior managers from derivatives 
dealers, end users and related legal, accounting and academic circles. They produced 
a 68-page report, which the Group of 30 published in July 1993 entitled 
“Derivatives: Practices and Principles”, which has come to be known as the G-30 
Report (Holton, 2002, 18 p). It describes then-current derivatives use by dealers and 
end-users. The heart of the study was a set of 20 recommendations to help dealers 
and end-users manage their derivatives activities. Topics included (Holton, 2002, 19 
p): 

• the role of boards and senior management, 
• the implementation of independent risk management functions 
• the various risks that derivatives transactions entail. 

 
With regard to the market risk faced by derivatives dealers, the report recommended 
that portfolios be marked-to-market daily, and that risk be assessed with both VaR 
and stress testing. While the G-30 Report focused on derivatives, most of its 
recommendations were applicable to the risks associated with other traded 
instruments. For this reason, the report largely came to define the new risk 
management of the 1990’s. The report is also interesting, as it may be the first 
published document to use the word “value-at-risk.” 
 
During the late 1980’s, JP Morgan developed a firm-wide VaR system. This system 
modelled several hundred risk factors. A covariance matrix was updated quarterly 
from historical data. Each day, trading units would report by e-mail their positions’ 
deltas with respect to each of the risk factors. These were aggregated to express the 
combined portfolio’s value as a linear polynomial of the risk factors. From this, the 
standard deviation of portfolio value was calculated. Various VaR metrics were 
employed. One of these was one-day 95% USD VaR, which was calculated using an 
assumption that the portfolio’s value was normally distributed. With this VaR 
measure, JP Morgan replaced a cumbersome system of notional market risk limits 

                                                 
16 Founded in 1978, the Group of 30 is a non-profit organization of senior executives, 

regulators and academics. Through meetings and publications, it seeks to deepen 
understanding of international economic and financial issues. 
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with a simple system of VaR limits. Starting in 1990, VaR numbers were combined 
with P&L’s in a report for each day’s 4:15 PM Treasury meeting in New York. 
Those reports, with comments from the Treasury group, were forwarded to chairman 
Weatherstone. One of the architects of the new VaR measure was Till Guldimann. 
His career with JP Morgan had positioned him to help develop and then promote the 
VaR measure within the firm. Guldimann formed a small team to develop the 
service that is now known as RiskMetrics. It comprised a detailed technical 
document as well as a covariance matrix for several hundred key factors, which was 
updated daily. Both were distributed without charge over the Internet (Holton, 2002, 
p. 20). The service was rolled out with considerable fanfare in October 1994. 
Launched at a time of global concerns about derivatives and leverage, the timing for 
RiskMetrics was perfect. RiskMetrics was not a technical breakthrough. While the 
RiskMetrics Technical Document contained original ideas, for the most part, it 
described practices that were already widely used. Its linear VaR measure was 
arguably less sophisticated than Wilson’s (1993). The important contribution of 
RiskMetrics was that it publicized VaR to a wide audience. 
 
 
3.3 Preconditions for successful implementation of Value-at-Risk 

methodology 
 
Although advanced methods and systems for measuring and managing risks are a 
necessary condition for having a business impact, they are not by themselves a 
sufficient condition. Experience has shown that at least two other preconditions, in 
addition to having the proper VaR methods and systems, need to be met in practice 
before VaR will have a significant business impact: the risk management 
organization must be capable of using VaR information to its advantage and, 
secondly, it must have the incentives to do so (Alexander, 2000, p. 65). For many 
institutions the main challenges to getting business impact is not necessarily 
developing VaR and risk adjusted performance measures (RAPM) systems, but 
rather ensuring that the risk management organization, processes and culture are 
in place to utilize, and take advantage of, the information (Alexander, 2000, p. 
65). 
 
The first precondition that must be met in order for an institution to leverage VaR 
and, by extension, RAPM into a true business impact is that the institution be 
organizationally capable of using the information to support its decision-making 
process (Alexander, 2000, p. 66). Risk comparability and the fungibility of risk 
capital imply that risk capital limits can, and should, be dynamically allocated 
across diverse business activities, allowing it to flow to wherever attractive 
business opportunities emerge. Many organizations find that market or credit risk 
lines are "sticky" and that, as a consequence, opportunities are being lost; those 
institutions that have managed to gain the most impact from VaR behave as if it is 
fungible, with senior management working together as a team, ensuring that 
while the overall risk capital limits are respected across the trading businesses, 
risk capital nonetheless flows to where it is needed within the trading organization 
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(Alexander, 2000, p. 67). This implies a fundamental redesign of the capital 
management processes and limit structures in addition to a robust and technically 
correct VaR methodology. 
 
The lack of close cooperation between people responsible for managing the 
returns and those responsible for managing the risks leads to a stalemate and an 
inability to actually use VaR information to support proactive portfolio 
management. While each of the two possible organizational realignment options 
(e.g. putting both return and risk management responsibilities with the front or 
within portfolio management) can be optimal in practice, depending upon the type 
of business being considered, and therefore may coexist within the same 
organization, it is clear that one must be chosen before active portfolio 
management based on VaR methodology can proceed (Alexander, 2000, p. 67-
68). 
 
The second precondition that must be met in order for an institution for a VaR 
system to have a business impact is that the institution has the incentive and 
opportunities to use the information. Managing capital and using VaR and RAPM 
measures bottom-up at the transaction level typically do not succeed until senior 
management recognizes top-down that capital is not a free good. This typically 
does not occur until management recognises that the 8-12 per cent Return on 
Equity (ROE) is simply not adequate (Alexander, 2000, p. 68). Until then, there 
is often very little incentive for the organization to use VaR and RAPM 
information, even if it were available and the management organization were in 
place. In general, experience has shown that the incentive to use VaR 
information is driven by two important considerations: first, the organization 
must view capital as a scarce resource that needs to be adequately compensated 
and, secondly, the organization must face non-trivial choices in terms of the types 
of businesses that could be undertaken given that scarce capital base. Broadly 
speaking, if management recognizes that capital is scarce and must be allocated 
between real business alternatives, then VaR and RAPM measures will begin to 
have real business impact. 
 
It is often thought that the third and final precondition for achieving business 
impact from VaR numbers is that they be technically correct. A more accurate (and 
more controversial) statement would be that they be directionally correct, adequate 
for the business and, most importantly, are actually used to support risk 
management decisions. In summary, VaR measures and systems are not by 
themselves sufficient to guarantee business impact: they must also be 
complemented by changes in the risk management organization and incentives. In 
point of fact, many institutions have obtained far more impact out of far less in 
terms of technical sophistication simply because they have put equal focus on these 
other two dimensions (Alexander, 2000, p. 68). 
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3.4 Opportunities for using Value-at-Risk forecasts 
 
There are many areas where VaR can potentially have a significant business impact. 
VaR can be applied consistently across a wide variety of diverse risky positions 
and portfolios, allowing the relative importance of each to be directly compared 
and aggregated. While there is a wide variety of standard risk measures 
available for characterizing the individual risks in a trading or derivatives 
portfolio (e.g. delta, gamma, vega, shifts, rotations) or credit portfolio (e.g. ratings, 
exposure numbers, watch lists), they provide little guidance when trying to interpret 
the relative importance of each individual risk factor to the portfolio's bottom line 
or for aggregating the different risk categories to a business unit or institution 
level. The ability to do so correctly allows an institution to gain a deeper 
understanding of the relative importance of its different risk positions and to gauge 
better its aggregate risk exposure relative to its aggregate risk appetite. VaR 
accomplishes these objectives by defining a common metric that can be applied 
universally across all risk positions or portfolios: the maximum possible loss within 
a known confidence interval over a given holding period. Besides being able to be 
applied universally across all risk categories, including market, credit, operational 
and insurance risks, this metric can be expressed either as returns or monetary units, 
and this makes it meaningful for all levels of management. It therefore serves as a 
relevant focal point for discussing risks at all levels within the institution, creating 
a risk dialogue and culture that is otherwise difficult to achieve given the otherwise 
technical nature of the issues. 
 
The comparability of VaR across different asset classes leads to the second 
important reason for calculating VaR. Because VaR can be calculated in monetary 
units and is designed to cover most, but not all, of the losses that might face a risk 
business, it also has the intuitive interpretation as the amount of economic or 
equity capital that must be held to support that particular level of risky business 
activity. In fact, the definition of VaR is completely compatible with the role of 
equity as perceived by many financial institutions: while reserves or provisions are 
held to cover expected losses incurred in the normal course of business, equity 
capital is held to provide a capital cushion against any potential unexpected 
losses. Since an institution cannot be expected to hold capital to cover all 
unexpected losses with 100 per cent certainty, the level of this capital cushion 
must be determined within prudent solvency guidelines over a reasonable time 
horizon needed to identify and resolve problem situations. The philosophy that 
economically-determined VaR is the relevant measure for determining capital 
requirements for risk businesses is also being increasingly adopted by regulators 
and supervisors. Unfortunately, while there is a convergence in terms of the 
acceptance of VaR as the relevant determinant of capital adequacy for most risk 
businesses in concept and even a few of the relevant parameters (e.g. a 99 per cent 
confidence interval/10-day holding period horizon), the actual calculation rules are 
left up to the individual institution. This is unfortunate because there exists a wide 
variety of different methods, each presenting the institution with non-trivial trade-
offs.  
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Another important characteristic of VaR is that it takes account of the correlations 
between different risk factors. If two risks offset each other, the VaR allows for this 
offset and reports a low overall risk. If the same two risks don't offset each other, the 
VaR takes this into account as well and gives a higher risk estimate. Clearly, a risk 
measure that accounts for correlations is essential in order to handle portfolio risks 
in a statistically meaningful way. Finally, VaR information can also be used in 
several other ways (Dowd, 2002, p.10-11):  

• Senior management can use it to set their overall risk target, and determine 
risk targets and position limits down the line. If the firm wants to increase its 
risks, it would increase the overall VaR target, and vice versa.  

• Since VaR provides information about the maximum amount a firm is likely 
to lose with a certain confidence level, it can be used to determine capital 
allocation. It can be used to determine capital requirements at the level of the 
firm, but also down to the level of the individual investment decision: the 
riskier the activity, the higher the VaR and greater the capital requirement.  

• VaR can be very useful for reporting and disclosing purposes, and firms 
increasingly make a point of reporting VaR information in their annual 
reports17  

• VaR information can be used to assess the risks of different investment 
opportunities before decisions are made. VaR-based decision rules can guide 
investment, hedging and trading decisions, and do so taking account of the 
implications of alternative choices for the portfolio risk as a whole18.  

• VaR information can be used to implement portfolio-wide hedging strategies 
that are otherwise rarely possible (Dowd, 1999). 

• VaR information can be used to provide new remuneration rules for traders, 
managers and other employees that take account of the risks they take, and 
so discourage the excessive risk-taking that occurs when employees are 
rewarded on the basis of profits alone, without any reference to the risks 
they took to get those profits. VaR can help provide for a more consistent 
and integrated approach to the management of different risks, leading also to 
greater risk transparency and disclosure, and better strategic management. 

 
 
3.5 Criticism and limitations of Value-at-Risk methodology 
 
Probably the most obvious criticism of VaR as a risk measure is that it is completely 
backwards looking, oriented towards past events and historical data. This means that 
VaR takes no account of the future events and developments that can have 
significant influence on the riskiness of a particular position, that might be 
predictable by other means. Unfortunately this is a just and undeniable critique that 
also applies to majority of other risk measures, with the exception of stress testing 
and scenario analysis, which on the other hand have their own shortcoming, as 
                                                 
17 For more on the use of VaR for reporting and disclosure purposes see Dowd, 2000 or 
Jorion, 2001. 
18 For further information on VaR-based decision rules see Dowd, 1999. 
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described earlier. The second, related problem of VaR is more practical. Even in a 
stationary environment it is difficult to estimate the loss distribution accurately, 
particularly for large portfolios, and many seemingly sophisticated risk management 
systems are based on relatively crude statistical models for the loss distribution. 
However, this is not an argument against using VaR. Rather, it calls for 
improvements in the way loss distributions are estimated and for prudence in the 
practical implementation of risk management models based on estimated loss 
distributions. In particular, risk measures based on the loss distribution, such as 
VaR, should be complemented by information from hypothetical scenarios. 
Moreover, forward-looking information reflecting the expectations of market 
participants, such as implied volatilities, should be used in conjunction with 
statistical estimates in calibrating models of the loss distribution. Unfortunately, this 
approach is also inherently faulty since it is necessarily based on past information 
(McNeil, Frey, Embrechts, 2005, p.36). These serious constraints of VaR as a risk 
measure are exactly the reason why the regulators require regular stress testing and 
encourage scenario analysis. Only by combining the advantages and strong points of 
backwards looking risk measure such as VaR and forward looking risk measures 
such as stress testing and scenario analysis can an institution hope to construct a 
sound and robust risk measurement system. 
 
Following the release of JP Morgan’s RiskMetrics and the widespread adoption of 
VaR measures, there was somewhat of a backlash against VaR. Criticisms followed 
three themes: 

1. different VaR implementations produced inconsistent results; 
2. VaR is conceptually flawed as a measure of risk; 
3. widespread use of VaR entails systemic risks. 

 
Critics of the first issue include Beder (1995) and Marshall and Seigel (1997). Beder 
(1995) performed an analysis using Monte Carlo and historical VaR measures to 
calculate sixteen different VaR measurements for three portfolios. The tested VaR 
measurements for each portfolio tended to be inconsistent, leading Beder (1995) to 
describe VaR as “seductive but dangerous”. In retrospect, this indictment seems 
harsh. Beder’s (1995) analysis employed different VaR metrics, different covariance 
matrices and historical VaR measures with very low sample sizes. It came as no 
surprise that Beder obtained disparate VaR measurements. Despite its shortcomings, 
Beder’s (1995) paper is historically important as an early critique of VaR. It was 
cited frequently in the ensuing VaR debate. To make matters worse, work by 
Marshall and Siegel (1997) showed that VaR models were exposed to considerable 
implementation risk as well, so even theoretically similar models could give quite 
different VaR estimates because of the differences in the ways in which the models 
are implemented. It is therefore difficult for VaR advocates to deny that VaR 
estimates can be very imprecise. The danger here is obvious: if VaR estimates are 
too inaccurate and users take them seriously, they could take on much bigger risks 
and lose much more than they had bargained for. As Hoppe (1998) put it: “believing 
a spuriously precise estimate of risk is worse than admitting the irreducible 
unreliability of one's estimate. False certainty is more dangerous than 
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acknowledged ignorance” (Hoppe, 1998, p. 50). Nassim Taleb, a famous derivatives 
trader put the same point in a different way: “You are worse off relying on 
misleading information than on not having any information at all. If you give a pilot 
an altimeter that is sometimes defective he will crash the plane. Give him nothing 
and he will look out the window” (Taleb, 1997a, p. 37). 
  
Of more concern were criticisms suggesting that VaR measures were conceptually 
flawed. A key issue was the validity of the statistical and other assumptions 
underlying VaR, and both Nassim Taleb (1997a,b) and Richard Hoppe (1998,1999) 
were very critical of the naive transfer of mathematical and statistical models from 
the physical sciences where they were well suited to social systems where they were 
often invalid. Such applications often ignore important features of social systems - 
the ways in which intelligent agents learn and react to their environment, the non-
stationarity and dynamic interdependence of many market processes, and so forth - 
features that undermine the plausibility of many models and leave VaR estimates 
wide open to major errors (Taleb, 1997a, p. 445). A good example of this problem is 
suggested by Hoppe (1999, p. 1): Long Term Capital Management (LTCM) had a 
risk model that suggested that the loss it suffered in the summer and autumn of 1998 
was 14 times the standard deviation of its returns, and a 14-sigma event shouldn't 
occur once in the entire history of the universe. So LTCM was either incredibly 
unlucky or it had a very poor risk measurement model (Dowd, 2002, p.12). Taleb 
(1997a,b) was also critical of the tendency of some VaR proponents to overstate the 
usefulness of VaR. He was particularly dismissive of Philippe Jorion's (1997) claim 
that VaR might have prevented disasters such as Orange County. Taleb's response 
was that these disasters had other causes - especially, excessive leverage. As he put 
it, a Wall Street clerk would have picked up these excesses with an abacus, and VaR 
defenders overlook the point that there are simpler and more reliable risk measures 
than VaR (Taleb, 1997b). Taleb is clearly right because any simple duration analysis 
should have revealed the rough magnitude of Orange County's interest-rate 
exposure. So in the case of Orange County the problem was not the absence of VaR, 
as such, but the absence of any basic risk measurement at all. Similar criticisms of 
VaR were also made by Culp, Miller, Neves (1997): they point out that the key issue 
is not how VaR is measured, but how it is used; they also point out that VaR 
measures would have been of limited use in averting these disasters, and might 
actually have been misleading in some cases. 
 
The third line of criticism suggests that, if many market participants use VaR to 
allocate capital or maintain market risk limits, they will have a tendency to 
simultaneously liquidate positions during periods of market turmoil. This risk is 
similar to that of portfolio insurance, which contributed to the stock market crash of 
1987, but there are differences. Stock positions tend mostly to be long because short 
selling comprises only a small fraction of equity transactions. Portfolio insurance 
programs in 1987 were designed to protect against a falling market, so they 
responded to the crash in lockstep. In other markets, positions may be long or short. 
In fixed income markets, there are lenders and borrowers. In commodities markets, 
there are buyers and sellers. In foreign exchange markets, every forward position is 
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long one currency but short another. If VaR measures compel speculators in these 
markets to reduce positions, this will affect both long and short positions, so 
liquidations will tend to offset. Taleb (1997a) pointed out that VaR players are 
dynamic hedgers, and need to revise their positions in the face of changes in market 
prices. If everyone uses VaR, there is then a danger that this hedging behaviour will 
make uncorrelated risks become very correlated - and firms will bear much greater 
risk than their VaR models might suggest. Taleb's argument is all the more 
convincing because he wrote this before the summer 1998 financial crisis, where this 
sort of problem was widely observed. Similarly, Danielsson (2001) and Basak, 
Shapiro (2001) suggested good reasons to believe that poorly thought through 
regulatory VaR constraints could destabilise the financial system by inducing banks 
to increase their risk-taking: for example, a VaR cap can give risk managers an 
incentive to protect themselves against mild losses, but not against larger ones. 
 
The above stated problems are common to all risk measurement systems, and are not 
unique to VaR. Unfortunately VaR has its own distinctive flaws and limitations.  
 
The first problem connected directly to parametric VaR is the idea of forecasting a 
correlation matrix. Forecast of the correlation matrix gives a point estimate in the 
future. The errors that result from correlation effects, dominate the errors in market 
movements at the time. So the correlation methodology for VaR is inherently flawed 
(Holton, 2002, p. 24). Such concerns have a practical tone, but underlying them are 
philosophical issues first identified by Markowitz (1952). If probabilities are 
subjective, it makes no sense to speak of the accuracy of a VaR measure or of a 
forecast of a correlation matrix. From a subjective perspective, a VaR measurement 
or a correlation matrix is merely an objective representation of a user’s subjective 
perceptions.  
 
A serious limitation of VaR as a risk measure is that it forecasts the most a firm can 
lose p percent of time (e.g. 99%), but tells nothing about what the loss can be on the 
remaining 1-p (e.g. 1%) percent of occasions. If a tail event (a loss in excess of VaR) 
does occur, it is natural to expect to lose more than the forecasted VaR, but the VaR 
figure itself gives no indication of how much that might be. This is a serious 
problem that can lead to some awkward consequences. A trader or asset manager 
might enter into deals that produce small gains under most circumstances and the 
occasional very large loss. If the probability of loss is low enough, then this position 
would have a low VaR and so appear to have little risk, and yet the firm would now 
be exposed to the danger of a very large loss. A single VaR figure can also give a 
misleading impression of relative risk of a particular position. For example, two 
positions with equal VaR at some given confidence level and holding period, but 
one position might involve much heavier tail losses than the other. The VaR 
measure taken on its own would incorrectly suggest that both positions were equally 
risky (Dowd, 2002, p. 28). Another problem with VaR was pointed out by Ju and 
Pearson (1999). If VaR measures are used to control or remunerate risk-taking, 
traders will have an incentive to seek out positions where risk is over- or 
underestimated and trade them. They will therefore take on more risk than suggested 
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by VaR estimates, so VaR estimates will be biased downwards. Ju and Pearson 
(1999) suggest that the magnitude of these underestimates can be very substantial. 
Another drawback is that VaR can discourage diversification. A good example of 
this effect is provided by Dowd (2002). For example, if there are 100 possible future 
states of the world, each with the same probability. There are 100 different assets, 
each earning reasonable money in 99 states, but suffering a big loss in one state. 
Each of these assets loses in a different state, so this means that one of them will 
certainly suffer a large loss. If a investor invest in one of these assets only, then the 
VaR will be negative at the 95% confidence level, because the probability of 
incurring a loss is 1%. However, diversifying the investments and investing in all 
assets, means that the investor is certain to incur a big loss. The VaR of the 
diversified portfolio is therefore much larger than the VaR of the undiversified one. 
This simple example shows that VaR measure can discourage diversification of risks 
because it fails to take into account the magnitude of losses in excess of VaR 
(Dowd, 2002, p. 29). 
 
VaR risk measures are also open to criticism from a very different direction. 
Artzner, Delbaen, Eber, Heath (1997,1999) have used an axiomatic approach to the 
problem of defining a satisfactory risk measure. They set out certain attributes that a 
good risk measure should satisfy, and call risk measures that satisfy these axioms 
“coherent”. A coherent risk measure ρ assigns to each loss X a risk measure ρ(X) 
such that the following conditions hold (Artzner, Delbaen, Eber, Heath, 1999): 
 
ρ(tX) = tρ(X)   (homogeneity)    (3.9) 
ρ(X) ≥  ρ(Y), if X ≤ Y  (monotonicity)   (3.10) 
ρ(X + n) = ρ(X) - n  (risk-free condition)  (3.11) 
ρ(X) + ρ(Y) ≤ ρ(X + Y)  (sub-additivity)   (3.12) 
 
for any number n and positive number t. These conditions guarantee that the risk 
function is convex, which in turn corresponds to risk aversion. That is: 
 
ρ(tX + (1 - t)Y) ≤  tρ(X) + (1 - t)ρ(Y)    (3.13) 
 
The first and second conditions are reasonable conditions to impose a priori, and 
together imply that the function ρ(·) is convex. The risk-free condition means that 
the addition of a riskless asset to a portfolio will decrease its risk because it will 
increase the value of end-of-period portfolio. According to the last condition a risk 
measure is sub-additive if the measured risk of the sum of positions X and Y is less 
than or equal to the sum of the measured risks of the individual positions considered 
on their own. VaR is not a coherent risk measure because it does not necessarily 
satisfy the sub-additivity condition. VaR can only be made to be sub-additive if a 
usually implausible assumption is imposed of returns being normally (or slightly 
more generally, elliptically) distributed (Artzner, Delbaen, Eber, Heath, 1999, p. 
217). Sub-additivity matters for a number of reasons (Dowd, 2002, p. 30): 
 



84   MARKET RISK IN TRANSITION COUNTRIES – VaR APPROACH 
 

 

• If risks are sub-additive, then adding risks together would give an overestimate 
of combined risk, and this means that a sum of risks can be used as a 
conservative estimate of combined risk. This facilitates decentralised decision-
making within a firm, because a supervisor can always use the sum of the risks 
of the units reporting to him as a conservative risk measure. But if risks are not 
sub-additive, adding them together gives an underestimate of combined risks, 
and this makes the sum of risks effectively useless as a risk measure. In risk 
management, it is desirable for risk estimates to be unbiased or biased 
conservatively. 

• If regulators use non-sub-additive risk measures to set capital requirements, a 
financial firm might be tempted to break itself up to reduce its regulatory capital 
requirements, because the sum of the capital requirements of the smaller units 
would be less than the capital requirement of the firm as a whole. 

• Non-sub-additive risk measures can also tempt agents trading on an organised 
exchange to break up their accounts, with separate accounts for separate risks, in 
order to reduce their margin requirements. This could be a matter of serious 
concern for the exchange because the margin requirements on the separate 
accounts would no longer cover the combined risks. 

 
A very serious shortcoming of VaR is that it provides no handle on the extent of the 
losses that might be suffered beyond the threshold amount indicated by this measure. 
VaR is incapable of distinguishing between situations where losses in the tail are 
only a bit worse, and those where they are overwhelming. Indeed, VaR merely 
provides a lowest bound for losses in the tail of the loss distribution and has a bias 
toward optimism instead of the conservatism that ought to prevail in risk 
management. 
 
An alternative measure that does quantify the losses that might be encountered in the 
tail is conditional value-at-risk, or CVaR. Both VaR and CVaR require the user to a 
priori specify confidence level and holding period. While VaR represents a 
maximum loss one expects at a determined confidence level for a given holding 
period, CVaR is the loss one expects to suffer, provided that the loss is equal to or 
greater than VaR. Formally, CVaR at the 100cl% confidence level is (adapted from 
McNeil, Frey, Embrechts, 2005, p. 45): 
 

[ ] [ ]{ }rclVaRrrErclCVaR ,|, −≤−≡     (3.14) 
 
Graphical representation of CVaR and its connection to VaR is presented in figure 
12. 
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Figure 12 - CVaR and VaR 

 
 
As a tool in optimisation modelling, CVaR has superior properties to VaR in many 
respects. It maintains consistency with VaR by yielding the same results in the 
limited settings where VaR computations are tractable, i.e., for normal distributions 
(or a more general class of ‘‘elliptical’’ distributions (Rockafellar, Uryasev, 2001, p. 
2)); for portfolios with such simple distributions, working with CVaR, VaR, or 
minimum variance (Markowitz, 1952) is equivalent (Rockafellar, Uryasev, 2001). 
Most importantly for applications, however, CVaR can be expressed by a 
remarkable minimization formula. This formula can readily be incorporated into 
problems of optimisation with respect to Xx ∈  that are designed to minimize risk 
or shape it within bounds. Significant shortcuts are thereby achieved while 
preserving crucial problem features like convexity. CVaR and its minimization 
formula were first developed in the paper by Rockafellar and Uryasev (1999).  
 
For continuous loss distributions, the CVaR at a given confidence level is the 
expected loss given that the loss is greater than the VaR at that level, or for that 
matter, the expected loss given that the loss is greater than or equal to the VaR. For 
distributions with possible discontinuities, however, it has a more subtle definition 
and can differ from either of those quantities, which for convenience in comparison 
can be designated by CVaR+ and CVaR-, respectively. CVaR+ is also known as 
“mean shortfall” (Mausser, Rosen, 1999), although the seemingly identical term 
“expected shortfall” has been interpreted in other ways in Acerbi, Nordio (2001); 
Acerbi, Tasche (2001), with the latter paper taking it as a synonym for CVaR itself), 
while “tail VaR” is a term that has been suggested for CVaR- (Artzner, Delbaen, 
Eber, Heath, 1999). Unlike CVaR+ and CVaR-, CVaR is seen to be a coherent 
measure of risk in the sense of Artzner, Delbaen, Eber, Heath (1999). Although 
recently being proclaimed as a “superior” risk measure CVaR also has its 
shortcomings. Alexander, Baptista (2003) find that under certain conditions, the 
presence of CVaR constraint will cause a risk-averse agent to select a portfolio that 
has a smaller standard deviation than the one that would have been selected in the 



86   MARKET RISK IN TRANSITION COUNTRIES – VaR APPROACH 
 

 

absence of CVaR constraints. In other conditions CVaR constraints cause a highly 
risk-averse agent to select a portfolio that has larger standard deviation. Since a 
CVaR constraint is tighter than the VaR constraint when the CVaR and VaR bounds 
coincide, these implications are also true but to a lesser extent if a VaR constraint is 
imposed. Consequently, a CVaR constraint is more effective than a VaR constraint 
as a tool to control slightly risk-averse agents but has a more perverse effect on 
highly risk-averse agents, such as pension funds (Alexander, Baptista, 2003, p.2). 
These findings significantly undermine the status of a “superior” risk measure and 
weaken the main argument put forward against VaR by the advocates of CVaR.  
 
CVaR is still not widely used in financial industry, but it plays an important role in 
insurance industry due to its focus on extreme events. CVaR has some advantages 
over VaR when used in portfolio optimisation but its use in measuring market risk 
and forming of capital requirements is still questionable since it, under certain 
conditions, suffers from similar problems that are put forward as main critiques of 
VaR. Furthermore, CVaR as a measure of risk is not recognised by the Basel 
Committee, meaning that the banks will continue to research and develop VaR 
models to make them more appropriate for forming of capital requirements. All 
things considering, recognising all its imperfections and flaws, at present, VaR is the 
most popular and widespread modern risk measure in existence. 
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4 CALCULATING VALUE-AT-RISK FOR MARKET 
RISK EXPOSURE 

 
 
Slightly confusing for the organizations considering implementing VaR measure is 
the fact that, although all institutions begin with the same generic definition, the 
actual calculation methods used can markedly differ. In fact, it seems that just as 
each institution has a unique name for its VaR, each also has a unique technical 
implementation, and while there is some convergence in terms of high-level 
approaches for measuring market risk, convergence in technical approaches is much 
farther off when discussing the measurement of credit, insurance and operational 
risks. In all fairness, the different technical implementations are based in part on 
theoretical grounds, in part on systems considerations, and in part on the 
institutional and strategic context in which the calculations are employed to 
measure and control risks. But the myriad of different context-specific methods 
only serves to highlight the need to evaluate carefully the trade-offs between the 
different methods when deciding which method is best suited to a particular 
business. The purpose of this chapter is to give a concise technical overview of 
some of the most prevalent techniques used for calculating VaR, clearly stating 
their (implicit) assumptions and their relative strengths and weaknesses from a 
theoretical as well as a practical perspective. Although VaR measurement 
techniques are becoming more prevalent for a wide variety of different risk 
classes (e.g. market, credit, insurance, operational, business volume and 
behavioural risks), in order to frame the issues in manageable terms the focus 
here is primarily on market or price risks. 
 
 
4.1 Time series modelling 
 
Financial asset prices are observed in the present, and will have been observed in the 
past, but it is not possible to determine exactly what they will be in the future. 
Financial asset prices are random variables, not deterministic variables. A random 
variable, also called a stochastic variable or variate, is a real-valued function that 
is defined over a sample space with probability measure. A value x of a random 
variable X may be thought of as a number that is associated with a chance 
outcome (Brockwell, Davis, 1991, p. 8). Each outcome is determined by a 
chance event, and so has a probability measure. This probability measure is 
represented by the probability density function of the random variable. For any 
probability density function g(x), the corresponding distribution function is 

defined as G(x)=Prob(X<x) ∫ ∞−
=

x
dxxg )( . It is not necessary to specify both 

density and distribution. Given the density it is possible to calculate the 
distribution, and conversely since g(x) = G'(x) (Alexander, 2001, p. 4).  
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As is the common practice in risk literature, the time series will be analysed through 
logarithmic returns of held assets. In general, when dealing with time series analysis, 
it is far easier to work with financial returns, instead of prices of assets. In financial 
markets the modelling procedures for return data and for price data are different and 
thus the statistical concepts and methods that apply to return data do not apply to 
price data. For example, volatility and correlation are concepts that only apply to 
stationary processes. It makes no sense to try to estimate volatility or correlation 
based on price data. Campbell, Lo and MacKinlay (1997) give the main reasons for 
using logarithmic returns in analysis of financial time series. First, for average 
investor, return of an asset is easy to understand and it represents a scale-free 
presentation of the investment opportunity. Second, compared to prices of assets, 
returns have some attractive statistical properties, such as stationarity. 
 
A random variable is lognormally distributed when its logarithms are normally 
distributed. A lognormal density function is not symmetrical; it is bounded by zero 
on the low side but can, in theory, reach infinitely high values. This ensures that 
the asset price (or portfolio value) is never negative even if the returns themselves 
are unbounded. The logarithmic returns make more sense over long horizon 
periods because it allows for interim income to earn returns. For this reason it is 
commonly assumed that financial assets (bonds and shares) and possibly 
commodity prices are better represented by lognormal than by normal variates. If 
the return process of an asset: 
 
 rt = (Pt – Pt-1)/Pt-1       (4.1) 
 
is normally distributed then (Tsay, 2002, p. 4): 
 
Pt/Pt-1= 1 + rt       and           
ln(Pt/Pt-1) ≈  r (when r is small, ln(1 + r) ≈  r)       (4.2) 
 
Therefore ln(Pt/P0) is normally distributed and Pt/P0 is lognormally distributed. 
This argument is based on investment assets and would not apply to interest rates 
(Alexander, 2001, p. 4). The argument also shows that the return over small time 
intervals is approximated by the first difference in the log prices. The general 
model for the log returns {rit; i = 1,…, N; t = 1,…, T} is its joint distribution function 
(Tsay, 2002, p. 9): 
 
Fr(r11,…,rN1; r12,…,rN2;…; r1T,…,rNT; Y; θ)   (4.3) 
 
Y – state vector consisting of variables that summarize the environment in which 

asset returns are determined, 
θ – vector of parameters that determine the distribution function Fr(.) 
 
The probability distribution Fr(.) governs the stochastic behaviour of the returns rit 
and Y. In majority of financial studies, the state vector Y is considered as a priori 
given and the main point of interest is the conditional distribution of returns. The 
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goal of time series analysis is to estimate the unknown parameter vector θ and to 
draw statistical inference about behaviour of returns given the information on 
historical returns. It is hard to predict price variations of financial assets so it is usual 
to assume that successive returns are relatively independent of each other. This 
means that uncertainty will increase as the holding period increases, the distribution 
will become more dispersed and its variance will increase. Put another way, the variance 
of n-day returns will increase with n. Therefore it is not possible to compare n-day 
variance with m-day variance on the same scale. It is standard to assume statistically 
independent returns and to express a standard deviation in annual terms.  
 
Two random variables X and Y are independent if and only if their joint density 
function h(x, y) is simply the product of two marginal densities. That is, if X has 
density f(x) and Y has density g(y) then X and Y are independent if and only if h(x, y) 
=f(x)g(y) (Hamilton, 1994, p. 742). Thus in financial markets the annual volatility is 
defined as (Alexander, 2001, p. 5): 
 
Annual volatility = (100σ√A)%     (4.4) 
 
where A is an annualising factor, the number of returns per year. The annualising factor 
is a normalizing constant: the variance increases with the holding period but the 
annualising factor decreases. The number of trading days (or risk days) per year is 
usually taken for the conversion of a daily standard deviation into an annualised 
percentage; that is, often A = 250 or 252 days. In this way volatilities of returns of 
different frequencies may be compared on the same scale in a volatility term structure. 
 
 
4.1.1 Linear stochastic processes 
 
When analysing a financial time series using formal statistical methods, it is useful 
to regard the observed return series, (r1, r2,..., rT), as a particular realisation of a 
stochastic process (Enders, 2004, p. 49). This realisation is often denoted {rt}, while, 
in general, the stochastic process itself will be the family of random variables 

{ }+∞
∞−tR  defined on an appropriate probability space (Mills, 2004, p. 8). The 

stochastic process can be described by a T-dimensional probability distribution, so 
that the relationship between a realisation and a stochastic process is analogous to 
that between the sample and the population in classical statistics. A fundamental 
theorem in time series analysis, known as Wold's decomposition (Hamilton, 1994, 
chapter 3.8), states that every weakly stationary19, purely non-deterministic, 

                                                 
19  A time series is considered strictly stationary if the joint distribution of (rt1,…,rtk) is the 

same as (rt1+t,…,rtk+t) for all t, where k is a positive integer and (t1,…,tk) is a series of k 
positive integers. This means that for a time series to be strictly stationary, the joint 
distribution of the observed variable needs to be time invariant. This condition is very 
restrictive and cannot be defended in the empirical studies of financial series. A time series 
is said to be weakly stationary if both the mean of rt and the covariance between rt and rt-l 
are time invariant, where l is an arbitrary positive integer. This means that a time series is 
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stochastic process (rt - µ) can be written as a linear combination (or linear filter) of a 
sequence of uncorrelated random variables20. The basic building block in time series 

modelling is a sequence { }∞
−∞=ttε whose elements have mean zero and variance σ2: 

 
E(µ) = 0  (4.5) 
E(ε2) = σ2  (4.6) 
 
for which the ε's are uncorrelated across time21: 
 
E(εtετ) = 0   for t ≠  τ         (4.7) 
 
A process satisfying Equations 4.5 to 4.7 is described as a white noise process. A 
stronger condition requiring the ε’s to be independent across time as well as 
satisfying Equations 4.5 and 4.6 is called independent white noise process: 
 
εt,  ετ independent for t ≠  τ            (4.8) 
                                                                                                                              

weakly stationary if the expected value of the series equals its mean which is a constant, 
E(rt) = µ and covariance between rt and some prior observation rt-l is constant and changes 
only with l, Cov(rt, rt-l) = γl. Necessary conditions for both the strictly and weakly 
stationary time series is that the first two moments of rt are finite. If the time series rt is 
normally distributed, the weak stationarity is equivalent to strict stationarity.  In the 
finance literature it is common to assume that an asset return series is weakly stationary 
(Tsay, 2002, p. 23). 

20 Purely non-deterministic process means that any linearly deterministic components have 
been subtracted from (rt - µ). Such a component is one that can be perfectly predicted from 
past values of itself and examples commonly found are a (constant) mean, as is implied by 
writing the process as (rt - µ), periodic sequences, and polynomial or exponential sequences 
in t. A formal discussion of this theorem can be found in Brockwell and Davis (1991, 
chapter 5.7). 

21 When the linear dependence between rt and its past values rt−l is of interest, the concept of 

correlation is generalized to autocorrelation. The correlation coefficient between rt and rt−l 

is called the lag-l autocorrelation of rt and is denoted by ρl, which under the weak 
stationarity assumption is a function of only l. Specifically: 
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/ for a given sample of returns { }T
ttr 1= . From the 

equation, ρ0 = 1, ρl = ρ-l, and −1 ≤  ρl  ≤ 1. In addition, a weakly stationary series rt is not 
serially correlated if and only if ρl = 0 for all l > 0. If {rt} is an identically and 
independently distributed (IID) sequence satisfying E(rt

2) < ∞ then lρ̂  is asymptotically 

normal with mean zero and variance 1/T for any fixed positive integer l. The test statistic is 

the usual t ratio, which is √T lρ̂  and follows asymptotically the standard normal 

distribution (Box, Jenkins, and Reinsel 1994, p. 26). 
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If all the conditions 4.5 to 4.8 are satisfied and εt ~ N(0, σ2) the process is called a 
Gaussian white noise process (Hamilton, 1994, p. 48). 
 
A financial time series rt is linear if it can be written as (Tsay, 2002, p. 27): 
 

∑
∞

=
−+=

0i
ititr εαµ        (4.9) 

 
where µ is the mean of rt , α0 = 1 and {εt} is a white noise series. For a linear time 
series in Equation 4.9, the dynamic structure of rt is governed by the coefficients αi , 
which are called the α-weights of rt in the time series literature (Tsay, 2002, p. 28). 
 
If rt is weakly stationary, by using the independence of {εt} its mean and variance 
are obtained as: 
 

µ=)( trE , ∑
∞

=

=
0

22)(
i

itrV ασ ε       (4.10) 

 

where 2
εσ  is the variance of εt . The lag-l autocovariance of rt is (Tsay, 2002, p. 28): 
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Consequently, the α-weights are related to the autocorrelations of rt as follows: 
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where α0 = 1.  
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The white noise process is transformed into a process rt by what is called a linear 
filter (Box, Jenkins, Reinsel, 1994, p. 9): 
 
                                    α(B) 
White noise                      
         εt                                                           rt         
 
 
where B is a backward shift operator, defined by Brt = rt-1; hence Bmrt = rt-m.              
 
The linear filtering operation simply takes a weighted sum of previous random 
shocks εt: 
 
rt = µ + εt + α1εt-1 + α2εt-2 + …  
    = µ + α(B)εt         (4.13) 
 
In general, µ is a parameter that determines the level of the process, and  
 
α(B) = 1 + α1B + α2B2 + …      (4.14) 
 
is a linear operator that transforms εt into rt, and is called the transfer of the filter. 
 
The sequence α1, α2, … formed by the weights may be infinite. If the sequence is 
finite, or infinite but absolutely summable meaning that ∑∞

j=0 │αj│< ∞, the filter is 
considered stable and process rt is stationary. In that case, parameter µ represents the 
mean about which the process varies. If the process is infinite and not absolutely 
summable, process rt is nonstationary and µ has no specific meaning except as a 
reference point for the level of the process. 
 
It is possible however, for a linear filter of a white noise process to result in a non-
linear stationary process. For a non-linear stationary process rt, the variance, V(rt) is 
a constant for all t but the conditional variance V(rt|rt-1,…, rt-n) depends on the 
observed prior value and thus can change from period to period. 
 
 
4.1.1.1 Autoregressive (AR) process 
 
Autoregressive models are the simplest and the most well known linear time series 
models, representing the time series as a function of its own lagged values. For 
example, the autoregressive model of order 1, the AR(1) model, is represented by 
(Hamilton, 1994, p. 53): 
 
rt = α0 + α1rt-1 + εt          (4.15) 
 
where εt ~ IID(0, σ). The constant term α0 models a trend in the series either upwards 
(α0 > 0) or downwards (α0 < 0). The lag coefficient α determines the stability of the 

Linear Filter 
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process. If | α | > 1 the time series will explode, that is rt → ± ∞ as t → ∞. The 
special case |α| = 1 gives the random walk model22, and it is only when |α| < 1 that 
the process defined by (4.15) will be stationary.  
 
Conditional on the past return rt-1, AR(1) model implies that: 
 
E(rt | rt-1) = α0 + α1rt-1, V(rt | rt-1) = V(εt) =  σε

2    (4.16) 
 
Given the past return (rt-1) the current return (rt) is centred around α0 + α1rt-1 with 
variability σε

2. This is a Markov property such that conditional on rt-1 the return rt is 
not correlated with rt-i for i > 1 (Tsay, 2002, p. 30). A generalization of the AR(1) 
model is the AR(p) model: 
 
rt = α0 + α1rt-1 + … + αprt-p + εt     (4.17) 
 
where p is a non-negative integer. 
 
This model says that the past p values rt-i (i=1,…, p) jointly determine the 
conditional expectation of rt given the past data.  
 
Assuming that the time series is weakly stationary, the E(rt) = µ, V(rt) = γ0, and 
Cov(rt, rt-j) = γj, where µ and γ0 are constant and γj is a function of j not t.  The mean, 
variance and autocorrelations of the series is obtained as follows (Tsay, 2002, p. 29). 
Taking the expectation of Equation 4.15: 
 
E(rt) = α0 + α1E(rt-1)      (4.18) 
 
Under the stationarity condition E(rt) = E(rt-1) = µ and hence: 

                                                 
22 Random walk model is related to geometric Brownian motion, a process that underlies the 

efficient market hypothesis related to basic option pricing models. Fundamental 
assumption of the efficient market hypothesis is that asset prices follow a process: 
 
dP/P = r dt + σ dZ 
 
where P is the price of an asset, r and σ are constants representing the drift in asset prices 
and the volatility of returns respectively, and Z is a Wiener process. That is, increments dZ 
are independent and normally distributed with mean zero and variance dt. Random walk 
model is obtained by applying Ito’s lemma to the geometric Brownian motion. The 
random walk process that will be followed by log prices is: 
 
ln Pt = c + ln Pt-1 + εt   
 
where c = r – σ2/2 and the error term εt ~ NID(0, σ2), is the returns process. The random 
walk model is commonly applied to model log prices in efficient financial markets. The 
random walk model allows for trends in asset prices through constant term c that 
corresponds to the expected return (Alexander, 2001, p. 320). 
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The obtained equation has two important implications for rt. The mean of rt exists 
only if α1 ≠ 1, and the mean of rt is zero if and only if α0 = 0. Thus, for a stationary 
AR(1) process, the constant term α0 is related to the mean of rt and α0 = 0 implies 
that E(rt) = 0. 
 
Using α0 = (1 - α1)µ, the AR(1) model can be written as: 
 
rt – µ = α1(rt-1 – µ) + εt       (4.20) 
 
which gives: 
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Meaning that (rt – µ) is a linear function of εt-i for i ≥ 0. Using this and the 
independence of the series {εt}, it is obvious that E[(rt – µ)εt+1] = 0. Under the 
assumption of stationarity, the Cov(rt-1, εt) = E[(rt-1 – µ)εt] = 0. This means that rt-1 
occurred before time t and εt does not depend on past information. The variance of 
the expected return in Equation 4.20 is: 
 
V(rt) = α1

2V(rt-1) + σε
2       (4.22) 

 
Under the stationarity assumption, V(rt) = V(rt-1), so that (Hamilton, 1994, p. 53): 
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given that α1

2 < 1. The requirement of α1
2 < 1 results from the fact that the variance 

of a random variable is bounded and non-negative. The weak stationarity of AR(1) 
model implies that –1 < α1 < 1. Given that –1 < α1 < 1, the independence of {εt} 
series and by Equation 4.21 it can be easily shown that the mean and the variance of 
rt are finite. In addition, by the Cauchy-Schwartz inequality, all the autocovariances 
of rt are finite (Tsay, 2002, p. 30). Therefore, the AR(1) model is weakly stationary. 
The necessary and sufficient condition for the AR(1) model in Equation 4.15 to be 
weakly stationary is | α1| < 1. 
 
Multiplying Equation 4.21 by εt, using the independence between εt and rt-1, and 
taking the expectation, yields the result: 
 
E[εt(rt – µ)] = E[εt(rt-1 – µ)] + E(εt

2) =  E(εt
2) = σε

2        (4.24) 
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Multiplying Equation 4.20 by (rt-l – µ), taking expectation, and using the previously 
obtained result from Equation 4.24 gives (Tsay, 2002, p. 31): 
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Consequently, for a weakly stationary AR(1) model V(rt) = γ0 and γl = α1γl−1, for l > 

0. Furthermore, the autocorrelation function (ACF) of rt satisfies ρl = α1ρl−1, for l ≥ 
0. Because ρ0 = 1, ρl = α1

l. This result says that the ACF of a weakly stationary 
AR(1) series decays exponentially with rate α1 and starting value ρ0 = 1. For a 
positive α1, the plot of ACF of an AR(1) model shows an exponential decay. For a 
negative α1, the plot consists of two alternating exponential decays with rate α1

2. 
 
It is easy to generalize the calculation of mean and variance of a stationary AR(p) 
model. For an AR(p) model the mean is equal to, E(rt) =  α0 / (1- α1 - … - αp) and V(rt) 
=  γ0 = α1γ1 + … + αpγp + σ2. The ACF of a stationary AR(p) series satisfies the 
difference equation (Tsay, 2002, p. 35): 
 

(1 − α1B − … −αpBp)ρl = 0,     for l > 0     (4.26) 
 
The plot of ACF of a stationary AR(p) model shows a mixture of damping sine and 
cosine patterns and exponential decays depending on the nature of its characteristic 
roots. 
 
 
4.1.1.2 Moving average (MA) process 
 
After the autoregressive process the moving average is the second building block for 
models of stationary time series, but its use is in the modelling of a white noise 
process. Moving average can be treated as an infinite order AR model with 
parameter constraints. A infinite order AR model can be made practical by forcing 
the coefficients αi to satisfy some constraints so that they are determined by a finite 
number of parameters. A simple representation of this approach is (Hamilton, 1994, 
p. 50): 
 
rt = α0 + θ1εt-1 + θ1

2εt-2 + … + θ1
iεt-i + εt       (4.27) 

 
where all the coefficients depend on a single parameter θ1 that is derived from αi = -
θ1

i for i ≥ 1. For the model to be stationary the absolute value of θ1 must be less than 
1, otherwise the series and θ1

i would explode. If |θ1| < 1, then θ1
i → 0 as i → ∞ , 

which results in a situation where the contribution of rt-i to rt decays exponentially as 
i increases. More distant observations have less effect on the current observed value 
of the variable than recent ones. 
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The above equation can be rewritten as (Tsay, 2002, p. 43): 
 
rt = α0(1 – θ1) + εt – θ1εt-1      (4.28) 
 
from which it is clearly visible that rt is composed of two parts: a constant term (α0) 
and a weighted average of shocks εt and εt-1, which are white noise.  
 
MA(q) model is of the form (Hamilton, 1994, p. 51): 
 
rt = α0 + εt + θ1εt-1 + … + θqεt-q  where  q > 0    (4.29) 
 
MA model is weakly stationary resulting from its characteristic that it is a finite 
linear combination of white noise sequences which first two moments are time 
invariant. For example, taking the expectation of MA(1) model results in (Tsay, 
2002, p. 44): 
 
E(rt) = α0        (4.30) 
 
which is time invariant. Taking the variance of MA(1) gives: 
 

22
1

22
1

2 )1()( εεε σθσθσ +=+=trV     (4.31) 

 
and again, V(rt) is time invariant. This also applies to general MA(q) models. The 
constant term of an MA model is the mean of the series and the variance of an 
MA(q) model is (Mills, 2004, p. 15): 
 
V(rt ) = (1 + θ1

2 + … + θq
2 )σε

2      (4.32) 
 

Setting the constant α0 in an MA(1) model equal to 0, multiplying it by rt−l, and 
taking the expectation yields: 
 

γ1 = −θ1σε
2   and   γl = 0, for l > 1    (4.33) 

 
Using the fact that V(rt) = (1 + θ1

2 )σε
2 gives (Mills, 2004, p. 14): 
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Thus, for an MA(1) model, the lag-1 ACF is not zero, but all higher order ACFs are 
zero. In other words, the ACF of an MA(1) model cuts off at lag 1. For an MA(q) 
model, the lag-q ACF is not zero, but ρl = 0 for l > q (Mills, 2004, p. 24). 
Consequently, a MA(q) series is only linearly related to its first q lagged values and 
hence is a “finite-memory” model. Order of MA model can be identified with the 
use of its ACF. For a time series with ACF ρl, if ρq ≠ 0, but ρl = 0, the time series 
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follows an MA(q) model. Because an MA model has finite memory its point 
forecasts converge to the mean of the series quickly. In general, for a MA(q) model, 
multi step ahead forecasts go to the mean after the q-th step (Tsay, 2002). 
 
 
4.1.1.3 Mixed Autoregressive Moving average (ARMA) process 
 
Simple autoregressive (AR) and moving average (MA) models can easily become 
troublesome and computationally intensive because of the need for high order model 
that results in an overwhelming number of parameters to describe the dynamic 
structure of the data. To overcome this difficulty an autoregressive moving average 
(ARMA) model can be implemented. ARMA model is a combination of AR and 
MA models in a compact form that keeps the number of parameters relatively small.  
 
Time series rt follows an ARMA(1,1) model if it satisfies (Brockwell, Davis, 2002, 
p. 55): 
 
rt – α1rt-1 = α0 + εt + θ1εt-1      (4.35) 
 
The left-hand side of the equation is the AR component of the ARMA model and the 
right-hand side is the MA component. For an ARMA model to function it is required 
that α1 + θ1 ≠ 0, because if this inequality is not satisfied, there is a cancellation in 
the left-hand and the right-hand side of the equation and the ARMA process is 
reduced to a white noise series.  
 
Properties of the ARMA(1,1) models are generalizations of those of AR(1) models 
with some minor modifications to handle the impact of the MA(1) component. 
Taking the expectation of Equation 4.35 yields (Tsay, 2002, p. 49): 
 

E(rt) − α1E(rt−1) = α0 + E(εt) + θ1E(εt−1)     (4.36) 
 
Because E(εi) = 0 for all i , the mean of rt is 
 

E(rt) = µ = α0 / (1 − α1)       (4.37) 
 
provided that the series is weakly stationary. This result is exactly the same as that 
of the AR(1) model in Equation 4.15. If the series rt is weakly stationary, then V(rt) 
= V(rt−1) and variance under an ARMA(1,1) process is (Tsay, 2002, p. 49): 
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Because the variance is positive it is necessary that α1
2 < 1 (i.e., | α1 | < 1). Again, 

this is precisely the same stationarity condition as that of the AR(1) model. The 
autocovariance function of rt for l = 1 is: 
 

2
1011 εσθγαγ −=−       (4.39) 

  
where γl = Cov(rt , rt−l). This result is different from that of the AR(1) case for which 

γl − α1γ0 = 0. However, for autocovariance at l = 2: 
 

γ2 − α1γ1 = 0     for    l > 1      (4.40) 
 
and is identical to that of the AR(1) case. In fact, the same technique yields 
 

γl − φ1γl−1 = 0, for l > 1        (4.41) 
 
In terms of ACF, the previous results show that for a stationary ARMA(1,1) model 
(Box, Jenkins, Reinsel, 1994, p. 81): 
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Thus, the ACF of an ARMA(1,1) model behaves very much like that of an AR(1) 
model except that the exponential decay starts with lag 2. Consequently, the ACF of 
an ARMA(1,1) model does not cut off at any finite lag. The PACF of an ARMA(1, 
1) model does not cut off at any finite lag either. It behaves very much like that of an 
MA(1) model except that the exponential decay starts with lag 2 instead of lag 1. 
The stationarity condition of an ARMA(1,1) model is the same as that of an AR(1) 
model, and the ACF of an ARMA(1,1) exhibits a similar pattern like that of an 
AR(1) model except that the pattern starts at lag 2. 
 
A general ARMA(p, q) model with p autoregressive terms and q moving average 
terms is in the form (Tsay, 2002, p. 50): 
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The AR and MA models are special cases of the ARMA(p, q) model. Using the 
back-shift operator, the model can be written as (Hamilton, 1994, p. 59): 
 

(1 − α1B − … −αpBp)rt = α0 + (1 − θ1B − … −θqBq)εt      (4.44) 
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The polynomial 1 − α1B − … −αpBp is the AR polynomial of the model. Similarly, 1 

− θ1B − … − θqBq is the MA polynomial. It is important that there are no common 
factors between the AR and MA polynomials; otherwise the order (p, q) of the 
model can be reduced. Like a pure AR model, the AR polynomial introduces the 
characteristic equation of an ARMA model. If all of the solutions of the 
characteristic equation are less than 1 in absolute value, then the ARMA model is 
weakly stationary. In this case, the unconditional mean of the model is E(rt ) = α0/(1 

− α1 − … −αp). 
 
In practice, the theoretical mean, variance and autocorrelations are unknown to the 
researcher. Given that the time series is stationary the sample mean, variance and 
autocorrelations can be used to estimate the parameters of the actual data generating 
process. In the identification of the ARMA model sample autocorrelation function 
(ACF) and sample partial autocorrelation function (PACF) can be compared to the 
various theoretical functions to help identify the true nature of the underlying 
process. A simple visual inspection of the correlogram may help to reach a 
conclusion that the series exhibits autocorrelation patterns that can be modelled by a 
certain AR or MA model. A more robust method of identification is to use some 
statistical test of autocorrelation.  
 
There are a number of tests for significance of autocorrelation and one of the most 
common is the Box-Pierce Q test. The Q-statistic is used to test whether a group of 
autocorrelations is significantly different from zero. A problem with Box-Pierce Q 
statistic is that it works poorly even in moderately large samples (Enders, 2004, p. 
68). Ljung and Box developed a superior small sample measure. Ljung-Box Q-
statistic is the lth autocorrelation of the T-squared returns, and calculates whether the 
size of the movement at time t has any useful information to predict the size of the 
movement at time t+l. Ljung-Box Q-statistic is (Engle, Mezrich, 1995, p. 112): 
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where T is the sample size, l number of autocorrelation lags included in the statistic, 

and 2ˆlρ  is the squared sample autocorrelation at lag l. Ljung-Box Q-statistic is used 

as a lack-of-fit test for a departure from randomness. Under the null hypothesis that 
the model fit is adequate, the test statistic is asymptotically chi-square distributed 
with m degrees of freedom. The Ljung-Box Q-statistic can also serve to check if the 
residuals from an estimated ARMA (p, q) model behave as a white noise process. 
 
The chance of using an ARMA process to model a financial return series is quite 
low, especially in the developed markets. Returns on financial assets themselves are 
usually not dependent (correlated), otherwise traders could forecast daily returns. 
This claim is often challenged in less developed markets where autocorrelation in 
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returns is not an unusual thing to find. Returns squared are usually dependent; 
meaning that volatility can be forecasted, but not the direction of the change of a 
variable. Because of this characteristic of financial markets the concept of ARMA 
models is highly relevant in volatility modelling. As a matter of fact, the generalized 
autoregressive conditional heteroskedastic (GARCH) model can be regarded as an 
ARMA model, albeit nonstandard, for the εt

2 series (Tsay, 2002, p. 48). 
 
 
4.1.2 Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

process 
 
Volatility is a fundamental characteristic of financial markets whose measuring and 
forecasting is always important. Volatility is a measure of the intensity of random or 
unpredictable changes in asset returns. Constant volatility models such as ARMA 
only refer to the unconditional volatility of a returns process. Processes that model 
unconditional volatility presume a constant variance of the time series throughout the 
whole data generation process. Such volatility can be defined in terms of the variance 
parameter of the unconditional distribution of a stationary returns process. In fact, 
unconditional volatility is only defined if it is assumed that a stationary stochastic 
process generates the asset return series, but this assumption seems far more reasonable 
than many other assumptions that are commonly made in financial models. 
 
Time-varying volatility models describe a process for the conditional volatility. A 
conditional distribution, in this context, is a distribution that governs a return at a 
particular instant in time. In more general terms, a conditional distribution is any 
distribution that is conditioned on a set of known values for some of the 
variables, that is, on information set (Alexander, 2001, p. 12). In time series 
models the information set at time t, It is often taken as all the past values that 
were realized in the process. Conditional volatility at time t is the square root of the 
variance of the conditional distribution at time t. The conditional mean at time t is 
denoted Et(rt|rt-i) or µt and the conditional variance at time t is denoted Vt(rt|rt-i) or σt

2 

(Engle, 1982, p. 988).  
 
An estimation procedure for the time-varying parameters of the conditional distributions 
is based on a model where anything that has happened in the past is not considered to 
be an observation on the current random variable. Its value is known, and so past 
observations become part of the information set. That is, the actual rather than the 
expected values of anything that happened in the past will be used to estimate the 
current value of a time-varying volatility parameter. Put another way, the current 
(and future) conditional distributions of the random variable will be “conditioned” 
on the current information set.  
 
The difference between constant and time-varying volatility models is illustrated in 
figure 13.  
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Figure 13 - The a) constant and b) time varying volatility 

 
Source: Alexander C.: Market Models. Chichester:  John Wiley & Sons, 2001. p. 13. 
 
The majority of time varying volatility models assume that returns are normally 
distributed, in which case each conditional distribution is completely determined by 
its conditional mean and its conditional variance. Both the conditional mean and the 
conditional variance could change at every time period throughout the process, but 
for the purposes of estimating and forecasting conditional volatility it is often 
assumed that the conditional mean is a constant. The conditional volatility has no 
place in the standard framework for linear regression, because standard linear 
regression assumes that returns are homoskedastic - that is, their conditional 
variance is the same throughout the process (Kennedy, 2003, p. 48) (this assumption 
is depicted in Figure 13a). The term conditional heteroskedasticity means that the 
conditional variance changes over time (depicted in Figure 13b). The episodes of 
high and low volatility are often called volatility clusters. This phenomenon shows 
the possibility of forecasting volatility. High volatility periods tend to persist before 
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falling to lower levels. Financial returns also tend to be leptokurtic23, which makes 
them even harder to model since they are not even asymptotically normal. These 
characteristics of financial time series were noted in the early works of Mandelbrot 
(1963), Fama (1965), Clark (1973) and Blattberg and Gonedes (1974). This early 
research led to modelling financial returns as IID draws from thick tailed 
distributions such as Student’s t and a family of distributions known as Stable 
Paretian distributions. 
 
Until a decade ago the focus of most financial econometrics and financial time series 
modelling was centred on the conditional first moments of a presumed theoretical 
distribution, and any temporal dependence in the higher order moments was treated 
as random noise. The increased interest in risk management in financial theory has 
necessitated the development of new econometric time series models that take into 
account time variation of variances and covariances. The goal of every volatility 
model is to describe the historical pattern of volatility and use this to forecast the 
future. Volatility can be thought of as a random variable that follows a stochastic 
process. Discovering the underlying stochastic process is the task of every volatility 
model. Financial data shows that volatility clusters vary significantly in their 
persistence i.e. life span. Volatility clusters can be very short-lived, lasting only 
hours, or they may last for decades. These long-term volatilities are usually driven 
by certain economic processes or/and institutional changes. The primary source of 
changes in market prices is the arrival of news about the asset’s fundamental value. 
If the news arrives in rapid succession, the returns exhibit a volatility cluster (Engle, 
Mezrich, 1995, p. 112). At the highest frequencies, the most likely sources of 
volatility are the turbulences included through trading. The frequency of the data 
dictates which types of volatility can be observed. Low frequency data (monthly, 
weekly) allows only low frequency or macroeconomic volatility to be observed. 
High frequency data is more revealing about the true nature of the volatility and its’ 
properties (Wright, Bollerslev, 1999).  
 
Unfortunately, use of data at frequencies higher than once a day introduces more 
complex features, such as a typical shape of volatility over a trading day, the bounce 
caused by bid and ask prices and the autocorrelation due to stale prices and irregular 
trading rates (Engle, Mezrich, 1995, p. 112). Following the same logic, if the 
frequency of the data is too high the low frequency volatility clustering cannot be 
observed. 
 
Given the apparent lack of any structural dynamic economic theory which could 
explain the variation in the higher order moments, particularly instrumental in the 
development of this area has been the autoregressive conditional heteroskedastic 
(ARCH) class of models first introduced by Robert Engle in his paper 
“Autoregressive Conditional Heteroscedasticity with Estimates of Variance of 

                                                 
23  Leptokurtosis = fat tails, expresion used to describe the forth moment of the probability 

distribution that differs from the normal distribution by being slimmer in the middle and 
having longer, fatter tails (Gujarati, 2003, p. 886). 
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United Kingdom Inflation” from 1982. The key insight of Engle's ARCH model is in 
the distinction between the conditional and unconditional second order moments. 
While the unconditional covariance matrix may be time invariant, the conditional 
variances and covariances of particular variables can often depend significantly on 
their previous states. For many issues in finance, such as option pricing, term 
structure of interest rates, general dynamic asset pricing relationships and especially 
risk management, understanding the true nature of temporal dependence is of utmost 
importance. From the perspective of econometric inference, the loss in asymptotic 
efficiency from neglected heteroskedasticity can be large. When evaluating 
economic forecasts, a much more accurate estimate of the forecast error uncertainty 
is available by conditioning the available information set. While the first empirical 
applications of the ARCH model was concerned with modelling inflationary 
uncertainty, the methodology has subsequently proven very useful in capturing 
temporal dependency in financial returns. For financial data it is more appropriate to 
use a generalization of this model, the symmetric Generalized Autoregressive 
Conditional Heteroskedasticity (GARCH) model introduced by Tim Bollerslev 
(1986) in his paper “Generalized Autoregressive Conditional Heteroskedasticity”. 
Based on this pioneering work, many different GARCH models have been 
developed, notably the exponential GARCH model of Daniel Nelson (1991) - one of 
the first asymmetric GARCH models to be introduced. For excellent reviews of 
literature on GARCH models in finance, see Bollerslev, Chou, Kroner (1992), Bera, 
Higgins (1993) and Palm (1996).  
 
The moving average model of volatility that was described in chapter 4.1.1.2 
assumes that asset returns are independent and identically distributed (IID). There is 
no time-varying volatility assumption in any of the weighted moving average 
methods, be it a simple moving average or an exponential moving average. Moving 
average models only provide an estimate of the unconditional volatility, assumed to 
be a constant, and the current estimate is taken as the forecast. The volatility 
estimates do change over time, but this can only be attributed to noise or sampling 
errors in a moving average model (Alexander, 2000, p. 129).  
 
In a GARCH model, returns are assumed to be generated by a stochastic process 
with time-varying volatility. Instead of modelling the data after they have been 
collapsed into a single unconditional distribution, a GARCH model introduces more 
detailed assumptions about the conditional distributions of returns. These 
conditional distributions change over time in an autocorrelated way, in fact the 
conditional variance, is in it self an autoregressive process. Volatility clustering 
implies a strong autocorrelation in squared returns, so a simple method for detecting 
volatility clustering is to calculate the first-order autocorrelation coefficient in 
squared returns. A wide established approach to detecting volatility clusters is the 
Ljung-Box Q-statistic calculated on the squared returns. Another powerful test for 
detecting autoregressive conditional heteroskedasticity in the data is Engle’s ARCH 
test. Engle's hypothesis test for the presence of autoregressive conditional 
heteroskedasticity (ARCH) effects tests the null hypothesis that a time series of 
sample residuals consists of independently and identically distributed (IID) Gaussian 



104   MARKET RISK IN TRANSITION COUNTRIES – VaR APPROACH 
 

 

disturbances, i.e., that no ARCH effects exist. Given sample residuals obtained from 
a curve fit (e.g., a regression model), Engle's ARCH test tests for the presence of pth 
order ARCH effects by regressing the squared residuals on a constant and the lagged 
values of the previous p squared residuals. Under the null hypothesis, the asymptotic 
test statistic, T(R2), where T is the number of squared residuals included in the 
regression and R2 is the sample multiple correlation coefficient, is asymptotically 
chi-square distributed with p degrees of freedom (Hamilton, 1994, p. 665)24.  
 
GARCH volatility forecasts are very flexible and can be adapted to any time period. 
The forward volatilities that are generated by GARCH models can have many 
applications. Valuing path-dependent options or volatility options, measuring risk 
capital requirements, calibration of binomial trees - all of these require forecasts of 
forward volatilities that have a mean-reverting property. Perhaps the most important 
of all the advantages of GARCH models is that they are based on a statistical theory 
that is justified by empirical evidence. Unlike constant volatility models, there is no 
need to impose unrealistic assumptions to force it into a framework that is 
inconsistent with its basic assumptions. This coherency has led to many applications 
of GARCH models to measuring financial risks and pricing and hedging of options. 
 
 
4.1.2.1 Properties of GARCH process 
 
A simple linear regression can provide a model for the conditional mean of a return 
process. In a factor model regression the expected value of a stock return will 
change over time, as specified by its relationship with the market return and any 
other explanatory variables. This expectation is the conditional mean. The classical 
linear regression model assumes that the unexpected return εt, that is, the error 
process in the model, is homoskedastic. In other words, the error process has a 
constant variance V(εt) = σ2 whatever the value of the dependent variable. Unlike the 
classical econometric models that presume constant variance of a variable, GARCH 
model allows the conditional variance to change over time as a function of past 
errors, leaving the unconditional variance constant (Alexander, 2001, p. 69). The 
fundamental idea in GARCH is to add a second equation to the standard regression 
model: the conditional variance equation (Enders, 2004, p.112). This equation 
describes the evolution of the conditional variance of the unexpected return process, 
Vt(εt) = σt

2. The dependent variable, the input to the GARCH volatility model, is 
always a return series, and accordingly a GARCH model consists of two equations. 
The first equation is the conditional mean equation. This can be anything, but since 
the focus of GARCH is on the conditional variance equation it is usual to have a 
very simple conditional mean equation. Many of the GARCH models used in 
practice take the simplest possible conditional mean equation rt = c + εt, where c is a 
constant. In this case the unexpected return εt, is just the mean deviation return, 
because the constant will be the average of returns over the data period.  In some 

                                                 
24 Other tests for ARCH effects can be found in Bollerslev, Chou, Kroner (1992, p. 8) and 

Bollerslev, Engle, Nelson (1994, p. 2974). 
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circumstances it is better to use a time-varying conditional mean, but on the other 
hand, using to many parameters in the conditional mean equation might lead to 
convergence problems. If there is significant autocorrelation in returns, 
autoregressive moving average conditional mean should be used to model the 
returns.  
 
The second equation in a GARCH model is the conditional variance equation. 
Different GARCH models arise because the conditional variance equations are 
specified in different forms. There is a fundamental distinction between the 
symmetric GARCH models that are used to model ordinary volatility clustering and 
the asymmetric GARCH models that are designed to capture leverage effects. In 
symmetric GARCH the conditional mean and conditional variance equations can be 
estimated separately. This kind of estimation is not possible for asymmetric GARCH 
models making their estimation more complex (Alexander, 2001, p. 70). Underlying 
every GARCH model there is also an unconditional returns distribution. The 
unconditional distribution of a GARCH process will be stationary under certain 
conditions imposed on the GARCH parameters and if necessary these conditions can 
be imposed on the estimation.  
 
 
4.1.2.2 Symmetric GARCH Models 
 
Symmetric GARCH models are the most widely used GARCH models. They are 
based on the idea of equally weighting the positive and negative returns to produce 
conditional volatility forecasts. If the time series can be represented by a stationary 
ARMA model rt = α0 + α1rt-1 + εt the conditional mean of rt+1 is: 
 
Etrt+1 = α0 + α1rt       (4.46) 
 
With the conditional mean forecast of rt+1 the forecast error variance is Et[(rt+1-α0 – 
α1rt)2] = Etεt+1

2 = σ2. On the other hand, if the unconditional forecast is used, the 
forecast will always be the long-run mean of {rt} sequence that is equal to α0/(1-α1). 
The unconditional forecast error variance is (Enders, 2004, p. 113): 
 
E{[rt+1-α0/(1-α1)]2}  = E[(εt+1 + α1εt + α1

2εt-1 + α1
3εt-2 + ...)2] 

= σ2/(1-α1
2)    (4.47) 

 
Since 1/(1-α1

2) > 1, the unconditional forecast has a greater variance than the 
conditional forecast. Conditional forecasts are preferred to unconditional ones 
because they take into account the current and past realizations of a series.  
 
In case that the variance of {εt} is not constant, any tendency for a sustained 
movements in the variance can be estimated using an ARMA model. One way of 
forecasting conditional variance in this case is by using AR(q) process using squares 
of estimated residuals (Enders, 2004, p. 114): 
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where νt is a white-noise process. 
 
If the values of α1, α2, ... , αn all equal zero, the estimated variance is simply a 
constant α0. Otherwise, the conditional variance of rt evolves according to the 
autoregressive process given in Equation 4.48. Conditional variance at t+1 can be 
forecasted using Equation 4.48: 
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A process that models the conditional variance in this fashion is called 
autoregressive conditional heteroskedastic (ARCH) model. The model for {rt} and 
the conditional variance are best estimated simultaneously using maximum 
likelihood techniques, so the linear specification of Equation 4.48 is not the most 
convenient. It is simpler to specify νt as a multiplicative disturbance as proposed by 
Engle (1982, p. 999): 
 

2
110 −+= ttt εαανε         (4.50) 

 
 where νt is a white-noise process such that σν

2 = 1, νt and εt-1 are independent, and α0 
and α1 are constants such that α0 > 0 and 0 < α1 < 1. Since νt is a white noise and 
independent of εt-1 it is obvious that the elements of {εt} have a mean zero and are 
uncorrelated (Hamilton, 1994, p. 48). 
 
Since Eνt = 0, 
          Eεt = E[νt(α0 + α1εt-1

2)1/2] 
    = EνtE(α0 + α1εt-1

2)1/2 = 0 
 
Since EνtEνt-i = 0, it also follows that 
 
Eεtεt-i = 0,   i ≠ 0 
 
In ARCH model the error structure {εt} is serially uncorrelated, meaning that there is 
no linear dependence between them, but the errors are not independent since they 
are related through their second moment (variance). The conditional variance itself 
is an autoregressive process resulting in conditionally heteroskedastic errors.  Since 
νt and εt-1 are independent and Eνt = 0, the conditional mean of εt is (Enders, 2004, p. 
115): 
 
E(εt

2 | εt-1, εt-2, ...) = Et-1νtEt-1(α0 + α1εt-1
2)1/2 = 0     (4.51) 

 
The influence of sequence {εt}, given by Equation 4.50, influences profoundly the 
conditional variance. Because Eνt

2 = 1, the variance of εt conditioned on the past 
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history of εt-1, εt-2, ... is (Enders, 2004, p. 115): 
 
E[εt

2 | εt-1, εt-2, ...] = α0 + α1εt-1
2         (4.52) 

 
As can be seen from Equation 4.52 the conditional variance of εt is dependent on the 
realized value of εt-1

2. If the realized value of εt-1
2 is large, the conditional variance at 

moment t will also be large. As opposed to usual regression, the coefficients α0 and 
α1 have to be restricted. In order to ensure that the conditional variance can never be 
negative it is necessary to assume that both α0 and α1 positive. To ensure the stability 
of the process it is necessary to restrict α1 that 0 < α1 < 1 (Nelson, Cao 1992, p. 
229). It makes no difference whether the market movement is positive or negative, 
since all unexpected returns are squared. Due to the influence of εt on rt, the 
conditional heteroskedasticity in {εt} will result in {rt} being heteroskedastic also. 
Thus, the ARCH model is able to capture periods of tranquillity and pronounced 
volatility in the {rt} series. The conditional mean and variance of {rt} series are 
given by (Enders, 2004, p. 117): 
 
Et-1rt = α0 + α1rt-1  
V(rt|rt-1, rt-2, ...)  = Et-1(rt - α0 - α1rt-1)2 

= Et-1(εt)2 = α0 + α1(εt-1)2    (4.53) 
 
Since α1 and εt-1

2 cannot be negative, the minimum value for the conditional variance 
is α0. For any nonzero realization of εt-1 the conditional variance of rt is positively 
related to α1. The unconditional mean and variance of rt are obtained by solving the 
difference equation for rt and taking expectation. For a sufficiently long series, the 
solution is given by (Enders, 2004, p. 117): 
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The unconditional expectation of Equation 4.54 is Ert = α0/(1-α1). The unconditional 
variance of rt follows directly from Equation 4.54: 
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Knowing that the unconditional variance of εt is constant and equal to α0/(1-α1), it 
follows that 
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Higher order ARCH (q) process developed by Engle (1982) are given by: 
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In ARCH(q) process all shocks from εt-1 to εt-q have a direct effect on εt, so that the 
conditional variance acts like an autoregressive process of order q.  
 
In empirical applications of the ARCH model a relatively long lag in conditional 
variance equation is often necessary, and to avoid violating the non-negativity 
constraint on variance parameters, a fixed lag structure has to be imposed. ARCH 
models are not often used in financial markets because the simple GARCH models 
perform much better. ARCH model with exponentially declining lag coefficients is 
equivalent to a GARCH(1,1) model so the GARCH process actually models an 
infinite ARCH process, with sensible constraints on coefficients and using only very 
few parameters (Bollerslev, 1986, p. 308). Since ARCH model needs very many 
lags to get close to a standard symmetrical GARCH(1,1) model, which has only 
three parameters, the use of standard ARCH models for financial volatility 
estimation is not recommended. 
 
ARCH model exhibits several other weaknesses (Tsay, 2002, p. 86): 
1.  The model assumes that positive and negative shocks have the same effects on 

volatility because it depends on the square of the previous shocks. In practice, it 
is well documented that price of a financial asset responds differently to positive 
and negative shocks (see e.g. Black, 1976, Christie, 1982, and Schwert, 1989b). 

2.  The ARCH model is rather restrictive. For instance, α1
2 of an ARCH(1) model 

must be in the interval [0, 1/3] if the series is to have a finite fourth moment. 
The constraints become more complicated for a higher order ARCH models. 

3.  The ARCH model does not provide any new insight for understanding the source 
of variations of a financial time series. It only provides a mechanical way to 
describe the behaviour of the conditional variance. It gives no indication about 
what causes such behaviour to occur. 

4. ARCH models are likely to over predict the volatility because they respond 
slowly to large isolated shocks to the return series. 

 
GARCH model extends the ARCH model by allowing for both the longer memory 
and a more flexible lag structure. In a GARCH model εt denotes a real-valued 
discrete-time stochastic process whose conditional distribution is assumed to be 
normal (other probability distributions could also be applied such as Student’s t) and 
ψt the information set (σ-field) of all information up till time t. Next period’s 
variance is forecasted by the GARCH (p, q) process in the following way 
(Bollerslev, 1986, p. 309): 
 
εt|ψt-1 ~ N(0, σt

2)           (4.58)  
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p≥  0,     q > 0 
α0> 0,   αi ≥  0,     i = 1,…,q 
βi ≥  0,                 i = 1,…,p 
 
α, β – GARCH parameters 
σt

2 – variance at time (t) 
εt – residual at time (t) 
 
when p = 0 the process is reduced to the ARCH(q) process, and when p=q=0, the 
process becomes a white noise series (ε). In the ARCH(q) process the conditional 
variance is specified as a linear function of past sample variances, whereas the 
GARCH(p, q) process uses also lagged conditional variances.  
 
Putting it into another perspective, the full GARCH(p, q) model adds q 
autoregressive terms to the ARCH(p) specification, and in the recursive form the 
conditional variance equation can be written as (Lamoureux, Lastrapes, 1990, p. 
226): 
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α0 > 0, α1,…, αp, β1,…, βq ≥ 0    εt|It ~ N(0, σt
2) 

 
However, it is rarely necessary to use more than a GARCH(1,1) model, which has 
just one lagged error square and one autoregressive term. Using the standard 
notation for the GARCH constant ω, the GARCH error coefficient α and the 
GARCH lag coefficient β, the symmetric GARCH(1,1) model is (Duan, 1997, p. 
98): 
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ω > 0,   α, β ≥ 0 
 
This “vanilla” GARCH model may also be written as (Alexander, 2000, p. 136): 
 

2
1

2
1

2
−− ++= ttt βσαεωσ          

(...)))(( 2
3

2
2

2
1 βαεωβαεωβαεω ++++++= −−− ttt  

...)()1/( 2
3

22
2

2
1 ++++−= −−− ttt εββεεαβω    (4.63) 

 



110   MARKET RISK IN TRANSITION COUNTRIES – VaR APPROACH 
 

 

In this form the GARCH(1,1) model is equivalent to an infinite ARCH model with 
exponentially declining weights. 
 
The size of the parameters α and β determines the short-run dynamics of the 
resulting volatility time series. Large GARCH lag coefficients β indicate that shocks 
to conditional variance take a long time to die out, so volatility is persistent. Large 
GARCH error coefficients α mean that volatility reacts intensely to market 
movements, and so if alpha is relatively high and beta is relatively low, volatilities 
tend to be spikier. In financial markets it is common to estimate lag coefficients 
based on daily observations in excess of 0.8 and error coefficients of no more than 
0.2 (Alexander, 2001, p. 73).  
 
Putting σt

2 = σ2 for all t in (4.62) gives an expression for the long-term steady-state 
variance in a GARCH(1,1) model (Chou, 1988, p. 282): 
 
σ2 = ω/(1 – α – β)        (4.64) 
  
The sum α + β must be less than 1 if the returns process is to be stationary. Only in 
this case will the GARCH volatility term structure converge to a long-term average 
level of volatility that is determined by Equation 4.64.  
 
An explicit generating equation for ARCH and GARCH processes is given by (Li, 
Ling, McAleer, 2001, p. 2): 
 

2
ttt σηε =         (4.65) 

 
where ηt ~ IID N(0,1) and σt

2 is given by Equation 4.59. Since σt
2 is a function of 

elements of the information set  (ψt-1) and therefore is fixed when conditioning on ψt-

1,  εt as given in Equation 4.65 will be conditionally normal with 

0)|()|( 1
2

1 == −− ttttt EE ψησψε   

and variance 2
1

2
1 )|()|( tttttt VV σψησψε == −− . This means that the process 

described in Equation 4.65 is the same as the GARCH process in Equation 4.58. 
This generating equation reveals that GARCH process actually rescales the 
underlying Gaussian innovation process (ηt) by multiplying it with the conditional 
standard deviation (σt

2), which is a function of the information set (ψt-1).  
 
The GARCH(p, q) process is wide-sense stationary with E(εt)=0, V(εt)=α0(1-A(1)-
B(1))-1 and cov(εt, εs) = 0 for t ≠ s if and only if A(1)+B(1)<1. The GARCH(p, q) 
process can be interpreted as an autoregressive moving average process in ε2

t of 
orders m=max{p,q} and p, respectively (Bollerslev, 1986, p. 310). 
 
Presuming that the process starts indefinitely far in the past with 2m finite initial 
moments and structure of the GARCH process, α1 + β1 < 1 suffices for wide-sense 
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stationarity. A necessary and sufficient condition for existence of the 2mth moment 
in a GARCH(1,1) process is (Bollerslev, 1986, p. 311): 
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The 2mth moment can be expressed by the recursive equation: 
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As εt is conditionally normal, by symmetry it follows that if the first 2mth moments 

exist, 0)( 12 =−m
tE ε . This directly relates to the fact that skewness coefficient (third 

moment) must be equal to zero. For β1=0, Equation 4.66 reduces to the well-known 

condition for the ARCH(1) process, 11 <m
ma α (Engle, 1982, p. 992). If 

m
ma /1

1 )( −>α  in the ARCH(1) process, the 2mth moment does not exist, whereas in 

the GARCH(1,1) process, even if m
mi i a /1

1

1
11 )()1( −∞

=

− >−=∑ βαδ , the 2mth 

moment might exist because of the longer memory in GARCH process (Bollerslev, 
1986, p. 311). 
 
Higher moments indicate further interesting information about the nature of the 

GARCH process. If 123 2
111

2
1 <++ ββαα , the fourth-order moment (kurtosis) 

exists and since (Drost, Nijman, 1993, p. 916): 
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and  
 

[ ] 12
111

2
11111

24 )321)(1()1(3)(
0

−
−−−−−++= αβαββαβααε tE (4.70) 

 
The coefficient of kurtosis is therefore (Bollerslev, 1986, p. 312): 
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which is greater than zero by assumption, and hence greater than assumed under 
normal distribution. This means that a GARCH(1,1) process is leptokurtic, meaning 
that it has heavier tails than assumed under normal distribution, a property that the 
process shares with the ARCH(q) process. 
 
The property of being leptokurtic, although the probability distribution of stochastic 
variable (ε) is normal, makes the ARCH and GARCH processes very convenient for 
modelling fat tailed observations, a characteristic that is usually displayed by asset 
returns. The lack of this property would mean that the modelling of heavy tailed 
behaviour of asset returns would require other, more computationally demanding 
distributions such as Student’s t, GED or a mixture of normal distributions. In fact 
Nelson (1990) demonstrated that under suitable conditions, as time interval goes to 
zero, a GARCH(1,1) process approaches a continuous time process whose stationary 
unconditional distribution is Student’s t.  
 
The GARCH(1,1) process is the most common specification for GARCH volatility 
models, being relatively easy to estimate and generally having robust coefficients 
that are interpreted naturally in terms of long-term volatilities and short-run 
dynamics. However, it should be stressed that all three parameter estimates, and 
particularly that of ω, will be sensitive to the data period used in the estimation of 
GARCH parameters. Thus the choice of historic data will affect the current volatility 
forecasts. In particular, long-term volatility forecasts will be influenced by the 
inclusion of stress events in the historic data (Alexander, 2001, p. 75).  
 
In finance, the return of a security may depend on its volatility. To model such a 
phenomenon, Engle, Lilien and Robins (1987) introduced the ARCH in the mean 
(ARCH-M) model in which the conditional mean is a function of conditional 
variance of the process (Engle, Lilien, Robins, 1987, p. 395): 
 
rt = g(zt-1, σt

2) + σtεt        (4.72) 
 
where zt-1 is a vector of predetermined variables, g is some function of zt-1 and σt

2 is 
generated by an ARCH(q) process. The most simple ARCH-M model has g(zt-1, σt

2) 
= δσt

2.  When σt
2 follows a GARCH process, Equation 4.72 will become a GARCH 

in the mean (GARCH-M) equation. A simple GARCH(1, 1)-M model can be written 
as (Lucchetti, Rossi, 2005, p. 310): 
 
rt = µ + cσt

2 + at , at = σtεt  
2

1
2

1
2

−− ++= ttt a βσαωσ          (4.73) 

 
where µ and c are constant. The parameter c is called the risk premium parameter. A 
positive c indicates that the return is positively related to its past volatility.  The 
formulation of the GARCH-M model in Equation 4.73 implies that there are serial 
correlations in the return series rt. These serial correlations are introduced by 
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correlations in the volatility process {σt
2}. The existence of risk premium is, 

therefore, another reason that some historical stock returns have serial correlations. 
 
Most financial markets have GARCH volatility forecasts that mean-revert. That is, 
there is a convergence in term structure forecasts to the long-term average volatility 
level, and by the same token the time series of any GARCH volatility forecast will 
be stationary. However, currencies and commodities tend to have volatilities that are 
not as mean reverting as the volatility of other types of financial assets. In fact, they 
may not mean-revert at all (Hsieh, 1989, Kroner, Kneafsey, Claessens, 1993, 
Diebold, Hahn, Tay, 1999, Giot, Laurent, 2002). In some currency markets not only 
are exchange rates themselves a random walk, but the volatilities of exchange rates 
may also be random walks. In this case the usual stationary GARCH models will not 
apply. 
 
When α + β = 1 the recursion equation can be simplified by letting β = λ and 
rewriting the GARCH (1,1) model as (Yu, So, 2002, p. 3): 
 

2
1

2
1

2 )1( −− +−+= ttt λσελωσ         )10( ≤≤ λ       (4.74) 

 
In this form the unconditional variance is no longer defined and term structure 
forecasts do not converge. Since in this case the variance process is non-stationary, 
Equation 4.74 is called the integrated GARCH (I-GARCH) model. When ω = 0 the 
I-GARCH model becomes an EWMA model, hence EWMA may be viewed as 
simple GARCH models without ω and with constant term structures (Giot, Laurent, 
2003, p. 645). 
 
I-GARCH is often encountered in foreign exchange markets but it is not unusual to 
find it in some stock indexes (Alexander, 2001, p.76-77). It is interesting that very 
often currency and the equity index I-GARCH models have persistence parameters 
that are near 0.94, the same as the RiskMetrics daily data persistence parameter 
(RiskMetrics, 1996, p. 97).  
 
Another symmetric variation of the general form of GARCH model is the 
components GARCH model. When a GARCH model is estimated over a rolling data 
window, different long-term volatility levels will be estimated, corresponding to 
different estimates of the GARCH parameters. The components GARCH model 
extends this idea to allow variation of long-term volatility within the estimation 
period (Engle, Lee, 1993a, 1993b, Engle, Mezrich, 1995). It is most useful in 
currency and commodity markets, where GARCH models are often close to being 
integrated and so convergent term structures that fit the market implied volatility 
term structure cannot be generated. The components model is an attempt to regain 
the convergence in GARCH term structures in currency markets, by allowing for a 
time-varying long-term volatility.  
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The GARCH(1,1) conditional variance may be written in the form (Alexander, 
2001, p. 78): 
 

2
1

2
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22 )1( −− ++−−= ttt βσαεσβασ  

)()( 22
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2 σσβσεασ −+−+= −− tt     (4.75) 

 
Where σ2 is defined by Equation 4.64. In components GARCH σ2 is replaced by a 
time-varying permanent component given by (Connor, 2001, p. 3): 
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Therefore the conditional variance equation in the components GARCH model is: 
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Equations 4.76 and 4.77 together define the components GARCH model. If ρ = 1, 
the permanent component to which long-term volatility forecasts mean-revert is just 
a random walk. While the components model has an attractive specification for 
currency markets, parameter estimation is, unfortunately not straightforward. 
Estimates may lack robustness and it seems difficult to recommend the use of the 
components model - except in the event that its specification has passed rigorous 
diagnostic tests. 
 
 
4.1.2.3 Asymmetric GARCH Models 
 
An important feature of financial returns known as “leverage effect”, that was first 
documented by Black (1976) describes the tendency for changes in the financial 
returns, especially in the stock market, to be negatively correlated with changes in 
stock volatility. A part of this phenomenon can be explained by the fixed costs that 
companies incur, such as financial and operational leverage. Lowering of stock price 
reduces the value of company’s equity relative to its debt, thus raising its debt to 
equity ratio, which raises the volatility of a stock making them riskier to hold. Black 
(1976) argues that the response of stock volatility to the direction of returns is too 
large to be explained by leverage alone. This conclusion is also supported by the 
work of Christie (1982) and Schwert (1989b). Simply stated, if volatility is higher 
following a negative return than it is following a positive return, then the 
autocorrelation between yesterday's return and today's squared return will be large 
and negative. 
 
A very simple test of this effect is to compute the first-order autocorrelation 
coefficient between lagged returns and current squared returns (Alexander, 2001, p. 
68): 
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If the first-order autocorrelation coefficient is negative and the corresponding Ljung-
Box Q-test is significantly different from zero, then there is asymmetry in volatility 
clustering which a symmetric GARCH model will not adequately capture. In such a 
case one of the asymmetric GARCH models should be employed. 
 
It is interesting that empirical research using robust test statistics that are much more 
sophisticated than the simple Ljung-Box Q-test procedure, (see Hagerud, 1997a) has 
found that relatively few stocks show signs of asymmetric volatility clustering. 
Hagerud (1997a) finds that only 12 out of his sample of 45 Nordic stocks exhibited a 
noticeable leverage effect. The volatility skew may still be very pronounced in these 
stocks, so where implied volatility smiles have noticeable skew effects, these may or 
may not be indicative of a leverage effect. 
 
Literally dozens of different variants of asymmetric GARCH models have been 
proposed and tested in a vast research literature. However, asymmetric GARCH 
models have a fairly limited practical use. It is a good thing to be able to include the 
possibility of asymmetry in the GARCH model so that any leverage effect will be 
captured, but one should do so with caution because the estimation of asymmetric 
GARCH models can be much more difficult than the estimation of symmetric 
GARCH models. 
 
To overcome some weaknesses of the GARCH model in handling financial time 
series, Nelson (1991) proposed the exponential GARCH (EGARCH) model. The 
conditional variance equation in the E-GARCH model is defined in terms of a 
standard normal variate zt. In particular, to allow for asymmetric effects between 
positive and negative asset returns, he considers the weighted innovation (Nelson, 
1991, p. 351): 
 

|))(||(|)( tttt zEzzzg −+= ϕλ         (4.79) 

 
where λ and φ are real constants. The parameter φ allows for the asymmetry in the 
model. If φ = 0 then a positive surprise (εt-j > 0) has the same effect on volatility as a 
negative surprise of the same magnitude. If –1< φ < 0, a positive surprise increases 
volatility less than a negative surprise. If φ < -1, a positive surprise actually reduces 
volatility while a negative surprise increases volatility. A number of researchers 
have found evidence of asymmetry in stock price behaviour – negative surprises 
seem to increase volatility more than positive surprises of the same magnitude 
(Black, 1976, Pagan, Schwert, 1990, Engle, Ng, 1991).  
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Both zt and |zt | − E(|zt |) are zero-mean IID sequences with continuous distributions. 
Therefore, E[g(zt )] = 0. The asymmetry of g(zt ) can be seen by rewriting Equation 
4.79 as (Tsay, 2002, p. 102): 
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For the standard Gaussian random variable εt, π/2|)(| =tzE . For the 

standardized Student’s t distribution E(|zt|) equals (McDonald, 1996, p. 430): 
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where B is a beta function25, and ν is degrees of freedom. 
 
An EGARCH(p, q) model can be written as (Nelson, 1991, p. 354): 
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where ω, α and β are not restricted to be nonnegative, B is the back-shift (lag) 

operator such that Bg(zt) = g(zt−1), and 1 + β1B + … + βpBp and 1 − α1B − … − αqBq 
are polynomials with absolute values of their zeros greater than one. Based on this 
representation, some properties of the EGARCH model can be obtained in a similar 
manner as those of the GARCH model. For instance, the unconditional mean of 
ln(σt

2) is ω. However, the model differs from the GARCH model in several ways. 
First, it uses logged conditional variance to relax the positiveness constraint of 
model coefficients. Second, the use of g(zt) enables the model to respond 
asymmetrically to positive and negative lagged values of εt . Several studies have 
found that the exponential GARCH model fits financial data very well, often better 

                                                 
25 Beta function, B(p,q), is defined by (McDonald, 1996, p. 455): 
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for positive p and q. B(p,q) can also be expressed in terms of a gamma function: 
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than other GARCH models. Even without significant leverage effects, the 
logarithmic specification appears to have considerable advantages  (Taylor, 1994, 
Heynen, Kemna, Vorst, 1994). Unfortunately, exponential GARCH is difficult to 
use for volatility forecasting because there is no analytic form for the volatility term 
structure. Some additional properties of the EGARCH model can be found in Nelson 
(1991) and Karanasos, Kim (2003). 
 
The asymmetric GARCH or A-GARCH model of Engle and Ng (1993) is easier to 
estimate than E-GARCH and its volatility term structure forecasts may be generated 
in a simple analytic way. The conditional variance equation for A-GARCH model is 
(Engle, Ng, 1993, p. 1755): 
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2 )( −− +−+= ttt βσλεαωσ                       (4.83) 

with constraints ω > 0, α, β, λ ≥ 0 
 
For the purpose of option pricing and hedging Duan (1997) advocates the non-linear 
asymmetric GARCH or N-GARCH model (Alexander, 2001, p. 81): 
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When volatility is stochastic the perfect markets assumption that is necessary for a 
risk-neutral probability measure no longer holds, but Duan (1997) shows that a form 
of local risk neutrality does hold if prices follow this model. Thus option prices can 
be calculated as discounted expected values under a unique risk neutral probability 
measure, in the usual way.  
 
The QGARCH model developed by Sentana (1991) is: 
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where xt-q = (rt-1,…, rt-q)’. The linear term in the model allows for asymmetry. The 
off-diagonal elements of A matrix account for interaction effect of lagged values of 
xt on the conditional variance. The various quadratic variance functions proposed in 
the literature are nested in Equation 4.85 (Palm, 1996, p. 212). The augmented 
GARCH (GAARCH) model of Bera and Lee (1990) assumes ψ = 0. Engle’s ARCH 
model restricts ψ = 0, βi = 0 and A matrix to be diagonal. The asymmetric GARCH 
model of Engle (1990) and Engle and Ng (1993) assumes A to be diagonal. The 
linear standard deviation model by Robinson (1991) restricts βi = 0, σ2 = ρ2, ψ = 2ρφ 
and A = φφ’, a matrix of rank 1. The conditional variance then becomes 

22 )'( qtt x −+= ϕρσ . 
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TGARCH and GJR-GARCH models are similar to the EGARCH model in spirit but 
have better forecasting properties (Engle, Mezrich, 1995, p. 114). Zakoian (1994) 
and Glosten, Jagannathan and Runkle (1993) introduced the models independently 
of each other and it was examined and compared with other asymmetric models in 
Engle and Ng (1993). The model gives a bigger coefficient to squared returns when 
they are negative than when they are positive. The TGARCH model and the GJR-
GARCH model do the same thing in a slightly different manner. The TGARCH 
model accounts for the asymmetry by allowing two different coefficients into the 
conditional volatility equation, and the GJR-GARCH model, in case of a negative 
surprise adds to volatility forecast via an indicator function. 
 
The Threshold GARCH (TGARCH) put forward by Zakoian is given by (Palm, 
1996, p. 212): 
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where { }0,max 22
tt εε =+  and { }0,min 22

tt εε =− . TGARCH account for asymmetry 

by allowing coefficients +2
tε and −2

tε  to differ. 

 
The GJR-GARCH put forward by Glosten, Jagannathan and Runkle is given by 
(Hagerud, 1997b, p. 3):     
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It = 1 if εt-i < 0   
It = 0 if εt-i ≥ 0 
 
Positive surprises have an impact of α while negative surprises have an impact of α 
+ γ. 
 
As shown in Hentschel (1995) many members of the GARCH family of models 
(taking p = q = 1) can be embedded in a Box-Cox transformation of the absolute 
GARCH model: 
 

λσβεασωλσ λνλλ /)1()(/)1( 111 −++=− −−− tttt f      (4.88) 

 
where f(εt) = |εt – b| - c(εt – b) is the news impact curve introduced by Pagan and 
Schwert (1990). For λ > 1, Box-Cox transformation is convex, for λ < 1, it is 
concave. For λ = ν = 1 and |c| ≤ 1 expression (4.88) specializes to become the 
AGARCH model. The model for the conditional standard deviation suggested by 
Schwert (1989a) arises when λ = ν = 1 and b = c = 0. The EGARCH model for p = 
q = 1 arises from Equation 4.88 when λ = 0, ν = 1 and b = 0. The TGARCH model 
is obtained when λ = ν = 1, b = 0 and |c| ≤ 1. The GARCH model arises if λ = ν = 2 
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and c = 0 whereas the GJR-GARCH is obtained when λ = ν = 2 and b = 0. The non-
linear ARCH model of Higgins and Bera (1992) leaves λ free and ν equal to λ with b 
= c = 0. The asymmetric power ARCH (APARCH) of Ding, Granger and Engle 
(1993) leaves λ free and equal to ν, b = 0 and |c| ≤ 1. Sentana’s (1991) QGARCH is 
not nested in the specification (4.88). Nesting existing GARCH models in a general 
specification like the one given in Equation 4.88 highlights the relationships 
between these models and offers opportunities for testing sequences of nested 
hypotheses regarding the functional form for conditional second order moments.  
 
 
4.1.2.4 Specification and estimation of GARCH models 
 
The choice of data window for GARCH model parameter estimation is crucial for 
successful inference of VaR estimates. When choosing the length of the observation 
period there is a trade-off between the amount of data needed for parameter 
estimates to be stable as the data window is rolled, and the need for the model to 
reflect current market conditions.  Daily or intra-day returns are usually used for 
GARCH estimation, because GARCH effects at lower frequencies are not so 
apparent. In choosing the time span of historical data used for estimating a GARCH 
model, the first consideration is whether major market events from several years ago 
should be influencing present forecasts. For example, including a national stock 
crash or some other special events in GARCH models will have the effect of raising 
current long-term volatility forecasts by several per cent. Several years of daily data 
should be used, enough to ensure that parameter estimates are relatively stable as the 
data window is rolled, but not so much that these estimates do not reflect changes in 
current market conditions. When there are outliers in the data, however far in the 
past, they can upset convergence of the GARCH model and result in misleading 
parameter estimates. A very long data period with several outliers is unlikely to be 
suitable because extreme moves from very long ago can have a great influence on 
the long-term volatility forecasts made today. The long-term level of volatility to 
which a current volatility term structure will converge depends on the estimates of 
the GARCH parameters. For example, in the GARCH(1,1) model the long-term 
volatility is related to the GARCH constant ω (Alexander, 2001, p. 85). All 
parameter estimates, and in particular the estimate of the GARCH constant, are 
sensitive to the historic data used for the model. Thus even if the market has been 
stable for some time, the estimate of long-term volatility can be high if the data 
period covers several years with many extreme market movements. It is for this 
reason that in choosing how far to go back with the data, one has to take a view of 
whether or not current forecasts should be influenced by events that occurred many 
years ago. 
 
If the GARCH parameter estimates vary considerably when the model is rolled over 
time it may be that the model is not well specified. Hamilton and Susmel (1994) 
give evidence to suggest that specification of the GARCH model will depend on the 
current market regime. 
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Following Bollerslev’s original paper from 1986, GARCH model parameters can be 
efficiently estimated by maximum likelihood. Maximum likelihood is a standard 
method for fitting the parameters of a density function. Under the classical 
assumptions of linear regression ordinary least squares estimation and maximum 
likelihood estimation are equal, so there is no explicit need for likelihood methods 
when estimating linear models or testing linear restrictions on their parameters 
(Gujarati, 2003, p. 112). However, non-linear statistical models are usually 
estimated by maximum likelihood because maximum likelihood estimators (MLEs) 
are almost always consistent (Johnston, DiNardo, 1997, p. 63).  
 
The likelihood of observation x on a random variable is the value of its density 
function at x, written f(x, θ), where θ = (θ1,…, θq) are the parameters of the density 
function. The likelihood function of an independent set of observations (x1,…, xn) on 
the same random variable with density function f(θ) is the product of the likelihoods 
of each point, that is (Davidson, MacKinnon, 2004, p. 400): 
 

∏= ),(),...,|( 1 θθ in xfxxL      (4.89) 

 
For given random sample data (x1,…, xn) the value of the likelihood will depend on 
θ.  
 
As θ ranges over all possible values for all parameters the likelihood function 
describes a (q + l) dimensional surface. The greater the value of the likelihood, the 
more probable are the parameter values, based on the given sample data. Different 
sample data will give different values of the likelihood, so the values of the 
parameters that generate the highest likelihood will depend on the choice of the 
sample data. 
 
The maximum likelihood estimator of θ is the value of θ that maximizes the 
likelihood function, given the sample data: 
 
MLE θ = arg max L(θ|x1,…, xn)      (4.90) 
 
The MLE of a parameter θ solves 
 

0/),...,|( 1 =∂∂ inxxL θθ         (i = 1,…, q)    (4.91) 

 
provided the matrix of second derivatives is negative definite. Being a product of 
density functions which are typically fairly complex, it is not straightforward to 
calculate the derivatives of L(θ|x1,…, xn). It is much easier to differentiate the log-
likelihood function ln L(θ|x1,…, xn), that is, the sum of the log densities (Engle, 
1984, p. 780): 
 

∑= ),(ln),...,|(ln 1 θθ in xfxxL  (4.92) 
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Since the optima of L are the same as those of ln L, it is standard to find the MLE as 
the value of θ that maximizes the log-likelihood (Alexander, 2001. p. 449). MLEs do 
not necessarily have good small-sample properties, but under standard data 
regularity conditions, MLEs are consistent, asymptotically normally distributed and 
asymptotically efficient. That is, they have the lowest variance of all consistent 
asymptotically normal estimators. In fact the asymptotic covariance matrix of MLEs 
achieves the Cramer-Rao lower bound for the variance of unbiased estimators 
(Kennedy, 2003, p. 33). This bound is the inverse of the information matrix I(θ), 
where 
 

)θθ/)(ln(I(θ 2 ') ∂∂∂−= θLE      (4.93) 
 
Information matrix equals minus the expected values of the second derivatives of the 
log-likelihood function. In large samples MLEs have the minimum variance 
property, with covariance matrix I(θ)-1. Statistical inference on MLEs follows from 
the convergence of their distribution to the multivariate normal N(θ, I(θ)-1) 
(Alexander, 2001, p. 449). 
 
Another feature that makes MLEs among the best of the classical estimators is that 

the MLE of any continuous function g(θ) of a parameter θ is )ˆ(θg , where θ̂  is the 
MLE of θ. Thus it is a simple matter to find MLEs of standard transformations or 
products of parameters if the individual parameter MLEs are known. 
 
Most algorithms are iterative, that is, the parameter estimates are updated using a 
scheme (Alexander, 2001, p. 94): 
 

θi+1 = θi + λiδi 

 
where λi is a step length and δi is a direction vector chosen so that the likelihood of 
the data under θi+1 is greater than the likelihood under θi. The gradient descent 
methods that are used for GARCH model estimation in most software packages 
define the direction vector in terms of the gradient of the likelihood function and the 
Hessian matrix of second derivatives of the likelihood function, both evaluated at θi. 
 
The point to emphasize is that the first-order conditions are easily solved since they 
are all linear. Calculating the appropriate sums may be tedious, but the methodology 
is straightforward. Unfortunately, this is not the case in estimating an ARCH or 
GARCH model since the first-order equations are non-linear. Instead, the solution 
requires some sort of search algorithm. The simplest way to illustrate the issue is to 
introduce an ARCH(1) error process into the simple regression model where the 
residuals(errors) are generated by: 
 
εt = yt - βxt 
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In a classical regression framework where the values of {εt} are drawn from a 
normal distribution having a mean of zero and a constant variance σ2 the likelihood 
of any realization of εt is given by (Vose, 2000, p. 237): 
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where Lt is the likelihood of εt. 
 
Since the realizations of {εt} are independent, the likelihood of the joint realizations 
of ε1, ε2,…, εT is the product in the individual likelihoods. Hence, if all have the 
same variance, the likelihood of the joint realizations is (Enders, 2004. p. 138): 
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Written in more convenient logarithmic form the likelihood is (Enders, 2004. p. 
138):   
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Under the presumption of ARCH(1) process εt is given by: 
 
εt =νt√σt

2        (4.97) 
 
Although the conditional variance of εt is not constant, it is clear that Equation (4.96) 
that is valid for linear regression, needs a modification to be applied to ARCH 
process. Since each realization of εt has the conditional variance σt

2, the joint 
likelihood of realization ε1 through εT is (Enders, 2004, p. 139): 
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This gives the log likelihood function (Enders, 2004, p. 140): 
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If εt = yt - βxt and the conditional variance is a ARCH(l) process σt
2 = α0 + α1εt-1

2 
substituting for σt

2 and yt yields (Enders, 2004, p. 140): 
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Once the (yt-1 – βt-1)2 is substituted for εt-1

2 it is possible to maximize ln L with 
respect to α0, α1 and β.  
 
Ignoring the term in ln(2π) because it does not affect the estimates, the log-
likelihood of a single observation rt for a normal symmetric GARCH model is 
(Bollerslev, 1987, p. 501): 
 

[ ])/(ln
2

1 222
ttttL σεσ +−=      (4.101) 

 
and ΣLt, should be maximized with respect to the variance parameters θ. In the case 
of GARCH(1,1) the variance parameters are θ = (ω, α, β)'. The first derivatives may 
be written as (Alexander, 2001, p. 95): 
 

[ ] ttttt gL 1)/())2/(1(/ 222 −=∂∂ σεσθ      (4.102) 

 
where the gradient vector gt is: 
 

θσ ∂∂= /2
ttg        (4.103) 

 
These derivatives may be calculated recursively, taking the ordinary least squares 
estimate of unconditional variance as pre-sample estimates of εt

2 and σt
2 and 

calculating the gradient vectors by the recursion: 
 
gt = zt + βgt-1        (4.104) 

 
where zt = (1, εt-1

2, σt-1
2). The algorithm may take a long time unless analytic 

derivatives are used to calculate the gradient26. This problem has limited the 
usefulness of GARCH models with Student’s t distribution, for very leptokurtic 
data, since they require numerical derivatives to be calculated at each iteration. 
Solving the first-order conditions ∂t/∂θ = 0 yields a set of non-linear equations in the 
parameters that may be solved using some quasi-Newton variable metric algorithm 
(McNeil, Frey, Embrecht, 2005, p.152), such as the Davidon-Fletcher-Powell (DFP) 
or the Berndt-Hall-Hall-Hausmann (BHHH) algorithm recommended by Bollerslev 
(1986). The BHHH iteration is: 

                                                 
26 For further discussion see Davidson, MacKinnon, 2004, Chapter 10. 
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where λt is a variable step length chosen to maximize the likelihood in the 
appropriate direction, Hi is the Hessian matrix Σ(gtgt') and gi = Σgt, both evaluated at 
θi. The iteration is deemed to have converged when the gradient vector g equals zero 
(McCullough, Renfo, 1998, p. 6). 
 
Sometimes convergence problems arise because the more parameters in the GARCH 
model the flatter the likelihood function becomes, therefore the more difficult it is to 
maximize. The likelihood function becomes like the surface of the moon (in many 
dimensions) so it may be that only a local optimum is achieved. In that case a 
different set of estimates may be obtained when the starting values for the iteration 
are changed. In order to ensure that the estimates correspond to a global optimum of 
the likelihood function it is necessary to run the model with many starting values 
and each time record the likelihood of the optima. If this type of convergence 
problem is encountered a more parsimonious parameterisation of the GARCH model 
should be used. Convergence problems with GARCH models can also arise because 
the gradient algorithm used to maximize the likelihood function has hit a boundary. 
If there are obvious outliers in the data then it is very likely that the iteration will 
return the value 0 or 1 for either the alpha or the beta parameter (or both). It may be 
safe to remove a single outlier if the circumstances that produced the outlier are 
thought to be unlikely to happen in future. Alternatively, changing the starting 
values of the parameters, or changing the data set so that the likelihood function has 
a different gradient at the beginning of the search might mitigate the boundary 
problem. Otherwise the GARCH model specification will have to be changed. A 
sure sign of using the wrong GARCH model is when the iteration refuses to 
converge at all, even after the data outliers have been removed, starting values 
changed and different data period chosen. Most univariate GARCH models should 
encounter few convergence problems if the model is well specified and the data are 
well behaved. This applies especially to the most simple, but often the most robust 
of the GARCH models, the normally distributed GARCH(1,1) model. Changes in 
the data will induce some changes in the coefficient estimates, but if the appropriate 
model is chosen, parameter estimates should not change greatly as the new data 
arrives, except when there are structural breaks in the data generation process. 
 
If a GARCH model is capturing volatility clustering adequately, the returns should 
have no significant autoregressive conditional heteroskedasticity once they have 
been standardized by their conditional volatility (Andersen, Bollerslev, Diebold, 
Labys, 1999a and Andersen, Bollerslev, Diebold, Ebens, 2000). An indication of the 
success of GARCH models to really capture the volatility clustering is that, even in 
very high-frequency exchange rate data where GARCH effects are strong and 
complex, returns are nearly normally distributed when divided by their conditional 
volatility (Zangari, 1996b, p. 7). Standard tests for autoregressive conditional 
heteroskedasticity are based on autocorrelation in squared returns. Returns 
themselves may not be autocorrelated, but if volatility clustering is present in the 
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data they will not be independent because squared returns will be autocorrelated. 
Therefore a simple test for a GARCH model is that the standardized returns squared, 

222 ˆ/ ttt rr σ=′  where 2ˆ tσ  is the estimate of the GARCH conditional variance, should 

have no autocorrelation. Such tests may be based on an autocorrelation test statistic 
such as the Ljung-Box Q test statistic or the Engle’s ARCH test. If there is no 
autocorrelation in the squared standardized returns the GARCH model is well 
specified. If several GARCH models account equally well for GARCH effects the 
GARCH model which gives the highest likelihood in post-sample predictive tests 
should be chosen, while taking into account the parsimony of the model. 
 
 
4.1.2.5 GARCH Volatility Term Structure 
 
Term structure volatility forecasts are forecasts of the volatility of h-day returns for 
every maturity h. Return rth over the next h days at time t, is approximately given by: 
 
rth = ln Pt+h – ln Pt       (4.106) 
 
where Pt denotes the price at time t. Converting the forecasted variance V(rth) for 
every h to a volatility gives the volatility term structure. The underlying model for 
both equally weighted moving averages and EWMA is a constant volatility model, 
so term structure volatility forecasts that are consistent with moving average models 
will be constant. If the return process is independent and identically distributed (IID) 
with constant variance σ2, taking variances of the rth gives V(rth) = hσ2 (Diebold, 
Hickman, Inoue, Schuermann, 1997, p. 2). If there are A returns a year, then the 
number of h-day returns per year is A/h, and annualising V(rth) into a volatility gives: 
 
h-day volatility = 100√(A/h)√(hσ2) = 100√(Aσ2) = 1-day volatility 
 
In general, the square root of time rule states that if 1-period returns are IID then h-
period standard deviations are just √h times the 1-period standard deviation. 
Although very simple and useful the square root of time rule it is not supported by 
empirical observations (Bollerslev, Chou, Kroner, 1992) and (Diebold, Hickman, 
Inoue, Schuermann, 1997, p. 3). 
 
The failure of square root of time scaling in a non IID environment and the nature of 
the associated erroneous long-horizon volatility estimates can be easily shown by a 
simple GARCH(1,1) process. The GARCH (1,1) process for 1-day returns is: 
 
yt = σtεt        σt

2 = ω + α yt
2 + βσt-1

2      εt ~ NID(0,1)   t = 1, ..., T  (4.107) 
 
Drost and Nijman (1993) in their study of temporal aggregation of GARCH 
processes show that, under regularity conditions, a sample path of a h-day return 
series follows a GARCH (1,1) process with (Drost, Nijman, 1993, p. 913): 
 



126   MARKET RISK IN TRANSITION COUNTRIES – VaR APPROACH 
 

 

2
1)()(

2
1)()()(

2
)( −− ++= thhthhhth yασβωσ      (4.108) 

 
where 
 

)(1
)(1

)( αβ
αβ

ωω
+−

+−
=

h

h h  

 

)()( )( h
h

h βαβα −+=  

 
and |β(h)|<1 is the solution of the quadratic equation (Drost, Nijman, 1993, p. 916), 
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and κ is the kurtosis of yt.

27 The Drost-Nijman formula is the key to correct 
conversion of 1-day volatility to h-day volatility. It is obvious that the square root of 
time scaling formula does not look like the Drost-Nijman formula. If, however, the 
scaling formula were an accurate approximation to the Drost-Nijman formula, it 
would still be very useful because of its simplicity and intuitive appeal. 
Unfortunately, that is not the case. As h → ∞, analysis of the Drost-Nijman formula 
reveals that α → 0 and β → 0, which means that temporal aggregation produces 
gradual disappearance of volatility fluctuations. Scaling by a square root of time, in 
contrast, magnifies volatility fluctuations, which is completely opposite. Term 
structure forecasts that are constructed from GARCH models mean-revert to the 
long-term level of volatility at a speed that is determined by the estimated GARCH 
parameters28. This is the great advantage of GARCH over moving average methods, 

                                                 
27 Bollerslev (1986, p. 312) shows that a necessary and sufficient condition for the existence 

of a finite fourth moment is 3α2 + 2αβ + β2 < 1. 
28 For detailed discussion on temporal aggregation of GARCH processes see Drost, Nijman 
(1993). 
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which are based on the assumption of constant volatility term structures. In the 
GARCH(1,1) model the 1-day forward variance forecast is (Alexander, 2001, p. 
100): 
 

222
1 ˆˆˆˆˆ ttt σβεαωσ ++=+         (4.110) 

 

Although the unexpected return at time t + j is unknown for j > 0, 22 )( jtjtE ++ = σε , 

so the j-step ahead forecasts are computed iteratively as: 
 

2
1

2 ˆ)ˆˆ(ˆˆ −++ ++= jtjt σβαωσ          (4.111) 

 

Putting 22 ˆˆ σσ =+ ji  for all j gives the steady-state variance estimate 

 

)ˆˆ1/(ˆˆ 2 βαωσ −−=                (4.112) 

 
that determines the long-term volatility level to which GARCH(1,1) term structure 

forecasts converge if 1ˆˆ <+ βα . 
 
The forecasts from an asymmetric A-GARCH model (4.83) also have a simple 
analytic form. The one-step-ahead forecast is (Engle, Ng, 1993, p. 1754-1755): 
 

222
1 ˆˆ)ˆ(ˆˆˆ ttt σβλεαωσ +−+=+          (4.113) 

 
and the steady-state variance estimate is 
 

)ˆˆ1/()ˆˆˆ(ˆ 22 βαλαωσ −−+=           (4.114) 

 
Comparison of (4.112) and (4.114) shows that the leverage coefficient λ from A-
GARCH model has the effect of increasing long-term volatility forecasts, all other 
things held constant. That is, if the ω, α and β estimates were not changed very much 
by moving from a symmetric GARCH(1,1) to an A-GARCH(1,1) model, the long-
term volatility forecasts from the A-GARCH model would be higher than those from 
a symmetric GARCH model. However, there will be a change in the ω, α and β 
estimates and the steady-state variance estimate in (4.114) should not differ from the 
GARCH(1,1) steady state given by (4.112). The most noticeable differences 
between the forecasts made by symmetric and asymmetric GARCH models are in 
the short-term volatility forecasts following a large fall in market price. Comparison 
of (4.111) with (4.113) shows that the difference between one-step ahead variance 

forecasts will be dominated by the term )2ˆ(ˆˆ tελλα − . Differences in volatility 
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forecasts may be considerable if a very large unexpected negative return is 
experienced at time t, as shown in table 5. 
 
Table 5 - The approximate influence of size of λ on increase in 1-day volatility 

forecast 
  Lambda Alpha 
    0.15 0.125 0.1 0.075 0.05 
  0.0001 0.868 0.793 0.709 0.614 0.501 
εt = - 0.01 0.0005 1.961 1.790 1.601 1.386 1.132 
  0.001 2.806 2.562 2.291 1.984 1.620 
              
  0.0001 1.937 1.769 1.582 1.370 1.119 
εt = - 0.05 0.0005 4.341 3.963 3.544 3.070 2.506 
  0.001 6.154 5.618 5.025 4.352 3.553 
              
  0.0001 2.739 2.501 2.237 1.937 1.582 
εt = - 0.1 0.0005 6.131 5.597 5.006 4.336 3.540 
  0.001 8.682 7.925 7.089 6.139 5.012 
 

Source: Alexander, 2001. p. 100. 
 
As it can be seen from table 5, in case of a major shock in the market (e.g. εt = - 0.1), 
the one day forecast volatility can differ by more than three times, depending on the 
size of lambda (λ). GARCH forecast of h-period variance is the sum of the 
instantaneous GARCH forecast variances, plus the double sum of the forecast 
autocovariances between returns (Alexander, 2001. p. 100): 
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The double sum is very small compared to the first sum on the right-hand side of the 
variance equation and in the majority of cases the conditional mean equation in a 
GARCH model is simply a constant, so the double sum is zero. Hence it is usual to 
ignore the second term and construct h-day forecasts simply by adding the j-step-
ahead GARCH variance forecasts. Since all 1-day forward variance forecasts are 
computed it is also a simple matter to generate h-day forward volatility forecasts at 
any future date. The speed of convergence of the GARCH(1,1) volatility term 
structure depends on the estimate of α + β. The smaller the sum, more rapid is the 
convergence to the long-term volatility estimate that is determined by Equation 
4.110. The half-life of the return to the long-term average is determined by 1/(1 – α - 
β). For example, if α + β is estimated as 0.95 it is 20 days, and if α + β is estimated 
as 0.99 it is 100 days.  
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4.2 Parametric approaches to calculating Value-at-Risk 
 
The main difference among numerous VaR methods is related to the estimation of 
distribution that adequately describes the returns of the undertaken position in 
financial markets. The most commonly used VaR models in the world are 
parametric, and assume in advance a particular theoretical shape of the cumulative 
distribution of a variable (commodity price, stock price, interest rate, etc.). The 
distinguishing feature of estimating VaR using parametric approaches is that it 
requires an explicit specification of the statistical distribution from which the data is 
drawn. A parametric approach can be thought of as fitting curves through the data 
and then reading the VaR from the fitted curve. In making use of a parametric 
approach, it is necessary to take account of both the statistical distribution and the 
type of data to which it is applied. Parametric VaR can be calculated under the 
assumption that the arithmetic returns are normally distributed with mean µr and 
standard deviation σr. To derive the VaR, it is necessary to obtain the critical value 
of rt, r*, such that the probability that rt, exceeds r* is equal to the chosen 
confidence level (Dowd, 2002, p. 42): 
 
r* = µr + αclσr           (4.116) 
 
where αcl is the standard normal variate corresponding to the chosen confidence 
level. Thus, for a chosen confidence level cl, αcl is the value of the standard normal 
variate such that 1 - cl of the probability density lies to the left, and cl of the 
probability density lies to the right. For example, under the normal distribution if the 
confidence level is 99%, the value of αcl is 2.33 (Kohler, 1994, p. 912). The return rt 
is related to the negative of the loss/profit divided by the earlier asset value, Pt-1 
(Dowd, 2002, p. 42): 
 
rt = (Pt – Pt-1)/Pt-1 = - Losst/Pt-1           (4.117) 
 
This gives the relationship between r*, the critical value of Pt, P* value 
corresponding to a loss equal to VaR, and the VaR itself: 
 
rt* = (P* - Pt-1)/Pt-1 = - VaR/Pt-1     (4.118) 
 
Substituting Equation 4.116 into Equation 4.118 and rearranging them gives the 
VaR equation (Dowd, 2002, p. 42): 
 
VaR = -(µr +  αclσr)Pt-1        (4.119) 
 
Unfortunately, this approach assigns a positive probability of the asset value, Pt, 
becoming negative. This drawback can be avoided by working with geometric 
(logarithmic) returns rather than arithmetic returns. For logarithmic returns the 
critical value of R, R*, that is the direct analogue of r* is: 
 
R* = µR  +  αclσR       (4.120) 
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The critical value P* (i.e., the value of Pt corresponding to a loss equal to VaR), is 
obtained as (Dowd, 2002, p. 43):  

 R* = ln P* - ln Pt-1 => ln P* = R* + ln Pt-1 
=> P* = exp [R* + ln Pt-1] = exp [µR  +  αclσR + ln Pt-1] 
=> VaR = Pt-1 - P* = Pt-1 - exp [µR  +  αclσR + ln Pt-1]     (4.121) 

 
This formula gives the lognormal VaR, which is consistent with normally distributed 
geometric returns. The lognormal VaR has the attraction of ruling out the possibility 
of negative asset (or portfolio) values. The lognormal VaR can never exceed Pt-1 
because the loss/profit data is bounded above by Pt-1 and this is a generally desirable 
property because it ensures that an investor cannot lose more than the invested 
amount. 
 
 
4.2.1 Normally distributed VaR  
 
The most frequently used distribution in finance is the normal (Gaussian) 
distribution primarily because of the central limit theorem29. Consequently, the 
normal distribution is often used when the distribution of sample means is of 
interest, more generally, when dealing with quantiles and probabilities near the 
centre of the distribution. A random variable (X) is normally distributed with mean µ 
and variance σ2 if the probability that the value x, which is a function of f(x), obeys 
the following probability density function (Holton, 2003, p. 133): 
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where X is defined over ∞<<∞− x         
 
Every random variable X that is normally distributed can be transformed into a 
standardised normal random variable (Z) if variable X is linearly transformed into X 
= µ + zσ (Šošić, Serdar, 1997, p. 248): 
 

σ
µ−

=
x

Z    ),(~ 2σµNX   )1,0(~ NZ    (4.123) 

 
The mean of a standardized distribution is 0, and standard deviation is equal to 1. 
With the help of standardized variable Z, the standardized normal distribution can be 
written as (Šošić, Serdar, 1997, p. 248): 
 

                                                 
29  Central limit theorem says that the means of samples of a random variable drawn from an 

unknown but well-behaved distribution are asymptotically (i.e., in the limit) normally 
distributed (Johnston, DiNardo, 1997, p. 55). 
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which does not depend on the unknown parameters µ and σ. The implication is that 
it is very simple to calculate the probabilities of any state of the variable X by using 
the linear transformation to Z. The probability that the value of variable Z is in 
interval [zx;zy] is: 
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Because of the fact that normal distribution uses only the mean and standard 
deviation of the variable to describe its’ distribution it is very simple to work with 
(Gujarati, 2003, p. 888). The third moment of the normal distribution, the skewness, 
is zero (i.e., so the normal distribution is symmetric) and the fourth moment, the 
kurtosis (which measures tail fatness), equals three30. The normality assumption has 
the additional attraction of making it easy to get good estimators of the parameters. 
Under normality, the least squares regression will give the best linear unbiased 
estimators of parameters, the same as those obtained by maximum likelihood 
approach (Davidson, MacKinnon, 2004, p. 399). In order to calculate VaR with the 
desired confidence level, and using the assumption of normal distribution, it is only 
necessary to estimate the µ and σ (Dowd, 2002, p. 78): 
 
VaR =  αclσr - µr          (4.126) 
 
One of the appealing features of parametric approaches is that the formulas they 
provide for VaR estimation also allow for estimation of risk measures at any 
confidence level or holding period. If µr and σr are the mean and standard deviation 
of the observed returns over a given period (e.g., a day), then the mean and standard 
deviation of the data set over hp such periods are (Dowd, 2002, p. 79): 
 
µr(hp) =hp µr      σr

2(hp) = hp σr
2   → σr(hp) = √hp σr   (4.127)   

 
Substituting Equation 4.127 into Equation 4.126 gives the formula for VaR over an 
arbitrary holding period hp and confidence level cl: 
 
VaR(hp, cl) =  αcl √hp σr – hp µr        (4.128) 
 
This makes it very easy to measure VaR once the values of σr and µr are known. 
These equations show that VaR will rise with the confidence level. However, the 
effects of a rising holding period are ambiguous, as the first terms in the formula 

                                                 
30  In most statistical and econometric software packages the equation for calculating kurtosis 

is modified to equal zero (κ - 3), for easier interpretation. 
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rises with hp, but the second terms fall as hp rises. Since the first term relates to σr 
and the second to µr the effects of a rising hp on VaR depends on the relative sizes of 
µr and σr. Furthermore, since the first term rises with the square root of hp, whilst the 
second terms rise proportionately with hp, the second terms will become more 
prominent as hp gets larger. It is very informative to look at the entire VaR surface, 
as it conveys much more information than single point estimates. The usual (i.e. µ > 
0, σ = 1) normal VaR surface is shown in figure 14. The magnitudes of VaR will 
vary with the parameters, but the basic shape will always be the same: the VaR rises 
with the confidence level, and initially rises with the holding period, but as the 
holding period continues to rise, the VaR eventually peaks, turns down and becomes 
negative. The VaR is therefore highest when the confidence level is highest and 
holding period is high but not too high. Away from its peak, the VaR surface has 
nicely curved convex isoquants: these are shown in the figure 14 by the different 
shades on the VaR surface. 
 
Figure 14 - Normal VaR surface against confidence level and holding period (µ = 

0.1, σ = 1) 

 
 
 
 
Figure 14 showing the VaR-holding period chart is very different from the VaR 
figure obtained by applying the square root of time rule, which is recommended 
under the Basle regulations on bank capital adequacy (Basel Committee on Banking 
Supervision, 1996a, p. 44). According to this rule, VaRs over longer holding periods 
can be approximated by taking a VaR measured over a short holding period and 
scaling it up by the square root of the desired holding period. If VaR over a 1-day 
holding period is VaR(1,cl), then the VaR over a holding period of hp days, 
VaR(hp,cl), is given by: 
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VaR(hp, cl) = √hp VaR(1,cl)        (4.129) 
 
This formula produces a VaR that always rises as the holding period increases, 
although at a decreasing rate, as illustrated in figure 15.  
 
Figure 15 - Normal VaR surface against confidence level and holding period (µ = 0, 

σ = 1) 

 
 
It is very useful to compare the surfaces in figures 14 and 15. In figure 14 the VaR 
becomes increasingly strongly negative, whilst the square root of time VaR in figure 
15 becomes increasingly strongly positive as holding period gets larger. In figure 15, 
VaR rises with both confidence level and holding period. It never turns down, and 
the VaR surface spikes upward as the confidence level and holding period approach 
their maximum values. It is important to emphasise that the difference between the 
surfaces in figures 14 and 15 is due entirely to the fact that µ is positive in the first 
case and zero in the second. This simple example shows the importance of the mean 
that characterises a particular time series.  
 
The normality assumption, whether applied to profit and loss data or returns, also 
has a number of potential disadvantages. One of the greatest advantages of normal 
distribution is at the same time its main weakness; the fact that it uses only the first 
two moments to describe the entire distribution (Guermat, Harris, 2002, p. 410). 
Furthermore, under the normal distribution returns are not limited, and this means 
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that VaR might produce forecasts of losses larger than the initial investment. 
However, it is usually the case (e.g., due to limited liability and similar constraints)31 
that the losses are bounded, and the failure of the normality assumption to respect 
constraints on the maximum loss can lead to gross overestimates of risk. 
 
A second potential problem is one of statistical plausibility. As mentioned already, 
the normality assumption is often justified by reference to the central limit theorem, 
but the central limit theorem applies only to the central mass of the density function, 
and not to its extremes. It follows that normality can be justified by reference to the 
central limit theorem only when dealing with more central quantiles and 
probabilities. When dealing with extremes - that is, when the confidence level is 
either very low or very high, the use of extreme value theorem is recommended (see 
Hongwei, Wei, 1999, McNeil, 1999, Embrechts, 2000). The extreme value theorem 
clearly shows that normal distribution should not be used to model the tails of the 
distribution32. 
 
The third problem of using normal distribution in modelling of financial data is that 
most financial returns have excess kurtosis (fat tails). Disregarding excess kurtosis 
can lead to major problems in risk management. Excess kurtosis implies that tails of 
a distribution are heavier than normal, and this means that VaR (at the relatively 
high confidence levels) will be greater. For example, VaR at the 95% confidence 
level, under the standard normality assumption is 1.645σ, but the Student’s t VaR is 
2.015σ, which is 22% greater (Kohler, 1994, p. 912-915). Furthermore, the 
proportional difference between the two VaRs gets bigger with the confidence level 
(e.g., at the 99% confidence level, the normal VaR is 2.326σ, but the Student’s t 
VaR is 3.365σ, which is almost 44% higher) (Kohler, 1994, p. 912-915). This means 
that if the returns are assumed to be normal when they are actually fat-tailed, VaR 
will be underestimated and these underestimates are likely to be particularly large 
when dealing with VaR at high confidence levels. 
 
The use of normal distribution is especially questionable in developing and shallow 
markets such as those of transition countries (see e.g. Žiković, 2006a, Žiković, 
Bezić, 2006). As stated earlier, the normally distributed mean-variance VaR takes 
into account only the first two moments of the distributions, and completely neglects 
the third and fourth moment around the mean (skewness and kurtosis). It is a well-
documented fact that distribution of stock returns in the developed markets is 
asymmetric (negatively skewed) and leptokurtotic (has fatter tails than described by 
the normal distribution) (Mandelbrot, 1963, Fama, 1965, Bollerslev, 1986, Schwert 
1990, Schwert, Seguin 1990). Because of these drawbacks, VaR calculation based 
on assumption of normality of distribution, including the Normal Monte Carlo 

                                                 
31 Losses greater than the initial investment are only possible in portfolios containing 

financial derivatives, such as futures, swaps and short positions in options (Kolb, 2003, p. 
201). 

32 For detailed discussion of Extreme Value Theory and its applications see Embrechts, 
Resnick, Samorodnitsky, 1997, Bensalah, 2002, Gilli, Kellezi, 2003. 
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simulation, when faced with empirical distribution that clearly is not normal, 
perform poorly. 
 
 
4.2.2 VaR with Student’s t distribution  
 
One way of accommodating excess kurtosis is to use a Student’s t distribution 
instead of normal distribution. The Student’s t distribution is usually defined as a 
one-parameter distribution. If t(υ) is distributed as a Student’s t with υ degrees of 
freedom, where υ is a positive integer, then t(υ) is distributed as the ratio of a 
standard normal distribution and the square root of a chi-squared distribution that is 
divided by υ, where the chi-squared itself has υ degrees of freedom (Gujarati, 2003,  
p. 890-892). Student’s t distribution has: a mean of zero, provided υ > 1, which is 
necessary for the mean to be finite; a variance of υ/(υ - 2), provided υ > 2, which is 
necessary for the variance to be finite; a zero skewness, provided υ > 3, which is 
necessary for the skewness to be finite, although the distribution is always 
symmetric, and a kurtosis of 3(υ - 2)/(υ - 4), provided υ > 4, which is necessary for 
the kurtosis to be finite (Evans, Hastings, Peacock, 2000, p. 179-180). In the case 
where υ = 1, Student’s t distribution becomes a Lorentzian (Cauchy) distribution, 
which is a member of the stable Lévy family of distributions (Blattberg, Gonedes, 
1974, p. 245). 
 
Student’s t probability density function is given by (Shaw, 2006, p. 44): 
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where Γ( · ) is the Gamma function. 
 
In risk measurement it is preferable to deal with a generalised Student’s t 
distribution that allows the values of the mean and standard deviation to be set by 
the user. If a and b are defined as location and scale parameters, the generalised 
Student’s t variate, t(a,b,υ), is related to the original Student’s t by the equation 
t(a,b,υ) = a + bt(υ). Assuming that the moments are finite, this generalised t 
distribution has mean µ, variance b2υ/(υ - 2), skewness 0 and kurtosis 3 (υ - 2)/(υ - 
4). If αcl,υ is the inverse function (i.e., VaR, if the data is in loss/profit form) of the 
original Student’s t for confidence level cl and υ degrees of freedom, then the 
inverse function or VaR of the generalised Student’s t is a + bαcl,υ. If parameter b is 

substituted for the standard deviation σ, VaR becomes υαυυσ ,/)2( cla −+ . This 

gives the solution for VaR which is distributed as Student’s t with mean a, standard 
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deviation σ, and kurtosis 3(υ - 2)/(υ - 4) (Dowd, 2002, p. 84-85). To make use of it in 
practice, a and σ are chosen to match the observed mean and standard deviation, and 
υ is chosen to approximate the observed kurtosis in the data set. An alternative to 
calculating VaR with Student’s t distribution is suggested by Huisman, Koedjik and 
Pownall (1998). They suggest that instead of fitting the Student’s t distribution by 
matching the number of degrees of freedom to the empirical kurtosis, it is possible to 
set the degrees of freedom equal to the inverse of a Hill estimator of the tail index, 
modified to correct for small-sample bias. The problem with this approach is that it 
produces an implied kurtosis equal to 3(υ - 2)/(υ - 4) that may not equal the 
empirical kurtosis. The parameters of the Student’s t VaR equation can also be 
estimated using least squares (LS) or maximum likelihood (ML) methods. However, 
these two approaches are in the case of Student’s t distribution distinctly different. In 
choosing between them, the ML method is theoretically superior only if the correct 
Student’s t distribution is applied. Results reported by Lucas (2000) suggest that the 
LS estimators are better in the face of possible misspecification, meaning that for 
risk management purposes, the LS approach to estimating Student’s t parameters is 
superior.  
 
When modelling a relatively high excess kurtosis, Student’s t distribution will have a 
relatively low value for υ, and for relatively low excess kurtosis a relatively high 
value for υ. Using the same notation as before, VaR is equal to (Dowd, 2002, p. 83): 
 

 rrcl hphpclhpVaR µσυυα υ −−= /)2(),( ,              (4.131) 

 
This Student’s t VaR formula differs from the earlier normal VaR formula, Equation 
4.128, in that the confidence level term, αcl,υ refers to a Student’s t distribution 
instead of a normal one, and so depends on the value of υ as well as cl. The 

Student’s t VaR formula also includes the additional multiplier term υυ /)2( − , 

which moderates the effect of the standard deviation on the VaR. Since the Student’s 
t distribution converges to the normal distribution as υ gets larger, Student’s t 
distribution can be regarded as a generalisation of the normal distribution that 
produces higher than normal kurtosis when υ is finite. However, as υ gets large, αcl,υ 
approaches its normal equivalent αcl, υυ /)2( − approaches 1, and Student’s t VaR, 

given in Equation 4.131, approaches the normal VaR - Equation 4.128. 
 
The Student’s t VaR surface with positive mean is shown in figure 16. Similar to the 
normal VaR surface the Student’s t VaR initially rises with the confidence level and 
holding period until it reaches its maximum. As holding period continues to rise, the 
surface eventually turns down again, enters negative territory, and then becomes 
ever more strongly negative as the holding period gets longer. The VaR surface falls 
off at lower confidence levels first, and it takes a very long time for it to fall off at 
higher confidence levels, especially in the cases of low number of degrees of 
freedom – high kurtosis value. The surface is similar to the normal VaR surface but 
the VaR values are significantly higher due to the effect of higher kurtosis.  
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Figure 16 - Student’s t VaR surface against confidence level and holding period (µ = 
0.1, σ = 1, υ = 4) 

 
 
Again, as with the normal VaR surface, the mean term can make a big difference in 
estimating risk, particularly over longer holding periods. In figure 17 Student’s t 
VaR has a µ = 0, which means that it rises with both confidence level and holding 
period. It never turns down, and the VaR surface spikes upward as the confidence 
level and holding period approach their maximum values. 
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Figure 17 - Student’s t VaR surface against confidence level and holding period (µ = 
0, σ = 1, υ = 4) 

 
 
The Student’s t VaR is very closely related to the normal VaR, and has many of the 
same properties. In particular, it behaves in much the same way as normal VaR in 
the face of changes in cl and hp. It rises with cl; for µr > 0, it tends to rise initially 
with hp, and then peak and fall, the same as in the case of normal distribution.  
 
The great advantage of the Student’s t distribution over the normal distribution is its 
ability to handle excess kurtosis. Unfortunately the Student’s t distribution also has 
its problems. Same as the normal distribution, it fails to respect constraints on 
maximum possible losses, and can produce misleadingly high risk estimates as a 
result. When used at very high or very low confidence levels, it has the drawback of 
not being consistent with extreme value theory. This means that from a theoretical 
point of view a Student’s t distribution should not be used for measuring VaR at 
extreme confidence levels. The Student’s t distribution suffers from an additional 
problem that does not affect the normal distribution. The Student’s t distribution is 
not stable except for two special cases - when υ is 1 (Cauchy distribution), and when 
υ is infinite (normal distribution) (Davidson, MacKinnon, 2004, p. 136).  Student’s t 
distribution is not stable in the more general case when υ is greater than 1 but finite. 
As a consequence this means that the Student’s t VaR formula cannot be relied on 
when forecasting VaR over long holding periods (Dowd, 2002, p. 84). 
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4.2.3 Lognormally distributed VaR 
 
A popular alternative to modelling financial returns by normal or Student’s t 
distribution is to assume that geometric returns are normally distributed, which is 
equal to assuming that the value of a portfolio at the end of a holding period is 
lognormally distributed. VaR model based on this preposition is usually referred to 
as lognormal VaR. The lognormal cumulative distribution function is defined as 
(McDonald, 1996, p. 430): 
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where 1F1[] denotes the confluent hypergeometric series33. 
 
Lognormal VaR is characterized by a probability density function that it asymmetric 
and has a distinctive long tail on its right-hand side and at the left-hand side cuts-off 
at zero. This means that the value of a portfolio is bounded to be always positive.  
 
The lognormal VaR is given by the following formula (Dowd, 2002, p. 85): 
 
VaR(hp,cl) = Pt-1 - exp [-hp µR + αcl√hp σR + ln Pt-1]        (4.133) 
 
Equation 4.133 generalises the earlier lognormal VaR equation - Equation 4.121 by 
allowing for an arbitrary holding period. While Student’s t distribution can account 
for excess kurtosis, it does not allow for skewness in the data. Skewness of a 
lognormal distribution is positive and increases with the variance, 

)1()1(
22

3 −−= σσµ ee . The lognormal assumption has the attraction of ruling 

out the possibility of a positive-value portfolio becoming a negative-value one: in 
this case, the VaR can never exceed the value of a portfolio. The lognormal VaR 
surface with positive mean is illustrated in figure 18. Similar to the normal and 
Student’s t VaR the lognormal VaR initially rises with the confidence level and 
holding period until it reaches an upper bound. This bound is given by the initial 
                                                 
33 Generalized hypergeometric series is defined by (McDonald, 1996, p. 455-456): 
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value of a portfolio. The VaR surface then flattens out along this ceiling for a period 
of time. As holding period continues to rise, the surface eventually turns down again 
and becomes smaller as the holding period gets longer. Same as in the case of 
Student’s t VaR surface, the lognormal VaR surface falls off much faster at lower 
confidence levels first, but takes a long time to decrease at higher confidence levels. 
The VaR surface always turns down eventually, regardless of the confidence level, 
as long as the mean return is positive. The reason for this is the same as for normal 
and Student’s t VaR. The mean term becomes more important than the standard 
deviation term as the holding period rises, since it grows at a faster rate.  
 
Figure 18 - Lognormal VaR surface against confidence level and holding period (µ = 

0.1, σ = 1, I = 1€) 

 
 
A lognormal VaR surface with a zero mean term shown in figure 19 acts analogous 
to normal and Student’s t VaR surface. VaR quickly hit its ceiling, set by the size of 
the initial investment, and stays at its maximum forever.  
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Figure 19 - Lognormal VaR surface against confidence level and holding period (µ = 
0, σ = 1, I = 1€) 

 
 
An important implication of any asymmetric distribution is that long and short 
positions have asymmetric risk exposures. A long position loses if the market goes 
down, and a short position loses if the market goes up, but with any symmetric 
distribution the VaR on a long position and the VaR on a short position are mirror 
images of each other, reflecting the symmetry of the lower and upper tails of the 
distribution. With the asymmetric distribution, such as lognormal, the most a long 
position can lose is the value of its investment, but a short position can make much 
larger losses than the initial investment.  
 
Since the lognormal approach is consistent with a geometric Brownian motion 
process for the underlying asset price, which is one of its main advantages, it also 
suffers from the same drawbacks, meaning that it also cannot accommodate fat tails 
in geometric returns. A simple solution to this problem is to replace the assumption 
that the geometric returns are normally distributed with the assumption that they are 
distributed as Student’s t. Log - Student’s t VaR can be written as:  
 

[ ]1,1 ln/)2(exp),( −− +−+−−= tRclRt PhphpPclhpVaR συυαµ υ       (4.134) 

 
Log - Student’s t VaR approach should combine the benefits of the geometric 
returns with the fatter tails of Student’s t distribution. For the same reason as the 
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normal and Student’s t distribution, lognormal distribution is also not suitable for 
measuring VaR at extreme confidence levels. 
 
 
4.2.4 Miscellaneous parametric approaches to calculating VaR  
 
Besides using Student’s t and lognormal distribution, other approaches can be used 
to handle excess kurtosis and asymmetry in the financial data. Some of the most 
widely accepted approaches are: Stable Lévy processes, elliptical distribution, 
hyperbolic distribution and mixture of normal distributions. A short overview of 
theses approaches is presented in this chapter of the book. 
 
4.2.4.1 Stable Lévy processes  
 
Non-normal stable Lévy processes, also known as α-stable or stable Paretian 
processes were first suggested as plausible representations of financial return 
processes by Mandelbrot and Fama in the 1960s (Mandelbrot, 1963, Fama, 1965) as 
a means of accommodating fat tails of financial return data. At the same time, stable 
Lévy processes also have a certain theoretical plausibility because they arise from a 
generalised version of the central limit theorem. Stable Lévy processes generally 
lack conventional closed-form solutions for their density or distribution functions, 
but can instead be represented by their characteristic function (Mantegna, Stanley, 
2000, p. 25): 
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This function has four parameters: a stability index, α, lying in the range 0 < α ≤ 2; a 
skewness parameter, β, lying in the range - 1 ≤ β ≤ 1 and taking the value 0 if the 
distribution is symmetric; a location parameter, µ, that is a real number; and a 
positive scale parameter, γ. The Lévy process has some interesting special cases 
(adapted from Dowd, 2002, p. 395): 
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Except for the normal special case (i.e., provided α < 2), all stable Lévy processes 
have probability density functions that converge to power-law tails with exponent 1 
+ α (Dowd, 2002, p. 265): 
 
p(x) ~ 1/x1+α         (4.137) 
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meaning that stable Lévy processes have infinite variance and heavy tails. Non-
normal Lévy processes are suitable for modelling heavy tails but have a serious 
disadvantage of having infinite variance. Besides the ability to capture fat tails Lévy 
processes have other properties that make them potentially very attractive for 
modelling financial data. Stable Lévy processes have domains of attraction, which 
means that any distribution close to a stable Lévy distribution will have similar 
properties to this distribution. This is important because it indicates that small 
departures from a stable Lévy process (e.g., because of errors in the data) should not 
produce serious errors in any inferences made using stable Lévy processes. Second 
attractive property of stable Lévy processes is stability, which means that the sum of 
two independent Lévy processes with the same index α is itself a Lévy process with 
index α. This property means that the distribution retains its shape when summed. 
The third attractive property is scale-invariance or self-similarity, which means that 
stable Lévy process can be rescaled over one time period so that it has the same 
distribution over another. This property leads to the stable Lévy scaling law 
(Mantegna, Stanley, 2000, p. 71): 
 
Z(t) = Z(∆t)1/α        (4.138) 
 
where Z is a stable Lévy process defined over a given period, and Z(t) is the 
equivalent stable Lévy process defined over period t. Stable Lévy processes scale at 
a rate 1/α. This means that the square root of time rule (i.e., where Z(t) grows with 
the square root of t) only applies in a special case, when α = 2 and Z(t) is a 
geometric Brownian motion, which is the same as saying that Z is normally 
distributed. Mittnik, Paolella and Rachev have provided considerable evidence to 
support the applicability of stable Lévy processes to financial returns data (Mittnik, 
Paolella, Rachev, 2000). Their work also suggests that stable Lévy processes can be 
regarded as (partial) alternatives to GARCH processes for modelling financial 
returns, because GARCH models also lead to fat-tailed return distributions (Mittnik, 
Paolella, Rachev, 2000, p. 389-390). Stable Lévy processes also have their 
drawbacks. Perhaps the most obvious is that the applicability of non-normal stable 
Lévy processes is undermined by widespread evidence that the variances of financial 
returns are finite (although this evidence has been challenged (e.g. Mittnik, Paolella, 
Rachev, 2000, p. 391)). There is also some evidence that financial return processes 
are not always scale-invariant (Cont, Potters, Bouchaud, 1997, p. 5). Another 
problem with these kinds of distributions are the power law tails, which decay too 
slowly from the point of view of financial modelling. Furthermore, in practice the 
distribution of price changes for larger time intervals converge to a normal 
distribution, the fact that is not consistent with the stable Lévy processes (Lehnert, 
Wolff, 2001, p. 2). 
 
The stated problems can be overcome by taking the Lévy distribution in the central 
part and introducing a cut-off in the far tails that is faster than the Lévy power law 
tails. The Lévy distribution with a cut-off and exponentially declining tails was 
introduced in the field of physics by Mantegna and Stanley and is known as a 
truncated Lévy flight (TLF). This cut-off ensures that the variance will be finite and 
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the distribution will asymptotically converge to a normal distribution. To model 
financial prices over time the truncated Lévy flight can be constructed by the sum of 
independent and identically distributed random variables described by a truncated 
Lévy distribution. Lévy flights have been observed experimentally in physical 
systems and have been used very successfully to describe for instance the spectral 
random walk of a single molecule embedded in a solid. In all these cases an 
unavoidable cut-off in the tails of the distribution is always present, which ensures 
the finiteness of the second moment of the process (Lehnert, Wolff, 2001, p. 4). One 
possible cut-off is the exponential function, for which the characteristic function has 
been developed (Koponen, 1995). Lehnert and Wolff (2001) corrected the mistake in 
characteristic function of Koponen (1995), and give the correct version (Lehnert, 
Wolff, 2001, p. 4):  
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where µ is a location parameter, C > 0 is a scale parameter, α is the characteristic 
exponent determining the shape of the distribution and especially the fatness of the 
tails (0 < α ≤  2, but α ≠ 1 ) and λ is the so-called cut-off parameter, which 
determines the speed of the decay and as a result the cut-off region. The parameter β 
(β∈[-1,1]) determines the skewness when β ≠ 0, the distribution is skewed to the 
right when -1 < β < 0 and skewed to the left when 0 < β < 1. For λ → +0 the 
truncated Lévy distribution reduces to the Lévy distribution. In contrast to the stable 
Lévy distribution the exponential cut-off ensures that all moments exist. The density 
function is only known analytically when λ → ∞ , β = 0, α = 1, (Cauchy distribution) 
and λ → ∞ , β = 0, α = 2 (Gaussian distribution). However, for the symmetric case 
the value of the density of the Lévy distribution is known at the origin and in the far 
tails. In all other situations the density must be generated numerically. Accurate 
numerical values for the density ψL can be calculated by Fourier-transforming the 
characteristic function and evaluating the integral numerically (Lehnert, Wolff, 
2001, p. 4). Because the variance of TLF is finite, it will eventually converge to a 
normal distribution. Hence, a TLF is a stochastic process that behaves like a stable 
Lévy process for relatively short periods, but eventually converges to a normal 
distribution in the long run. 
 
4.2.4.2 Elliptical and Hyperbolic Distributions 
 
A simple approach to modelling fat tails is to use elliptical distributions, as 
suggested in recent research papers (Eberlein, Keller, Prause, 1998, Bauer, 2000). 
The name elliptical distribution comes from the fact that their log-density is an 
ellipse; by comparison, the log-density of a normal distribution is a parabola. These 
distributions are symmetric distributions with a less constrained kurtosis, and 



Chapter 4 Calculating Value-at-Risk for market risk exposure   145 

 

include the normal as a special case when the kurtosis is equal to three. They also 
have the attraction of having a straightforward VaR formula. If the returns 
distribution is elliptical with location and scale parameters equal to µ and δ, VaR is 
given by (Bauer, 2000, p. 456-457): 
 
VaR = - αclδ - µ            (4.140) 
 
where αcl is the percentile of the standard form elliptical distribution. In the special 
case of the normal distribution, αcl will be the percentile of the standard normal 
distribution. Elliptical distributions are easy to work with at the individual-position 
level, as well as at the aggregate portfolio level. To estimate the elliptical VaR, all 
that is needed is an estimate of the two parameters µ and δ. Location parameter (µ) 
can be estimated as a mean of a sample by conventional methods, and the scale 
parameter (δ) can be estimated by using a maximum likelihood procedure. A further 
generalisation of elliptical distributions is the family of generalised hyperbolic 
distributions. These distributions include the hyperbolic and normal inverse 
Gaussian distributions as special cases, as well as the elliptical and normal 
distributions. They can also accommodate excess kurtosis, but have forbidding 
density functions and, special cases aside, do not yield closed-form solutions for 
VaR. Elliptical and hyperbolic distributions are theoretically attractive, because they 
can be regarded as generalisations of the normal distribution, that can be applied at 
both the position and portfolio level (Eberlein, Keller, Prause, 1998).  
 
4.2.4.3 Normal Mixture Approach 
 
Another attractive alternative, suggested by Zangari (1996b) and Venkataraman 
(1997), is to model returns using a mixture-of-normals approach. This process 
assumes that most of the time the returns are drawn from one normal process, but 
occasionally returns are drawn from another normal process with a higher variance. 
If px is the probability that a standardized return was generated from the normal 
distribution Nx, where Nx is defined by its mean µx and variance σx

2.  A typical two 
variable normal mixture process is (Zangari, 1996b, p. 10): 
 
Normal mixture process = p1N1(µ1, σ1

2) + p2N2(µ2, σ2
2)     (4.141) 

 
Since the normal mixture model can assign large probabilities to more extreme 
returns the standardized returns are modelled as the sum of a normal return (nt), with 
mean zero and variance σn

2, and another normal return βt, with mean and variance 
that occurs each period with probability p. Standardized return R(t) is generated 
from a following model (Zangari, 1996b, p. 11): 
 
Rt = nt + δtβt         (4.142) 
 
where δt = 1 with probability p, or δt = 0 with probability 1 - p. When δt = 1, the 
standardized return is normally distributed with µβ(t) and variance σβ

2 + σn
2. 

Otherwise it is distributed normally with mean zero and variance σn
2. Modelling the 
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returns in this way results in very large or very low values that occur more 
frequently than under an unadjusted normal distribution. For a mixture of two 
random variables the kurtosis of the mixture is 3[pσ1

4 + (1 – p)σ2
4] / [pσ1

2 + (1 – 
p)σ2

2]2, which is greater than 3 provided σ1
2 ≠ σ2

2 and 0 < p < 1 (Lagnado, 
Delianedis, Tikhonov, 2000, p. 4).  
 
Normal mixture approaches have a number of merits: they are conceptually simple, 
they can accommodate any reasonable degree of kurtosis, they make use of the 
standard linear normal estimates of variances and correlations, and so retain much of 
the tractability of normal approaches and (at least for portfolios with a small number 
of different assets) they require relatively few additional parameters (Dowd, 2002, p. 
93). However, implementing the normal mixtures approach requires the estimation 
of the parameters involved, which is a very demanding task. The most obvious 
approach to parameter estimation is maximum likelihood, but unfortunately, the 
normal mixture likelihood function does not have a global maximum, and this makes 
a standard ML approach unusable (Dowd, 2002, p. 94). Zangari and Venkataraman 
suggest alternative solutions to this problem, Zangari (1996b) suggests involving a 
Gibbs sampling tool, and Venkataraman (1997) suggests involving quasi-Bayesian 
maximum likelihood34. Implementing a normal mixtures approach also raises a 
problem of modelling the correlation between the individual risk factors, including the 
δt binary terms. The normal mixtures approach can also be generalised to allow the 
unobserved selection variable δt, to depend on an unobserved state, and this state can 
be modelled as a Markov chain. The Markov chain approach is suggested by Billio 
and Pelizzon (1997), and has the advantage of allowing for volatility clustering, 
which the normal mixtures approach does not. However, it also requires more 
parameters than the mixtures approach, and is far harder to implement. 
 
 
4.2.5 RiskMetrics methodology 
 
RiskMetrics describes a methodology based on J.P. Morgan's approach to 
quantifying market risk in portfolios of fixed-income instruments, equities, foreign 
exchange, commodities, and their derivatives in the financial markets. The data 
consists of spot prices or rates, volatilities and correlation matrices for more than 30 
countries (RiskMetrics, 1996, p. 17). It is an outgrowth of recent trends in financial 
markets, the growth of trading, securitization, derivatives, focus on performance 
evaluation, indexing and the risk-return trade of in investing and the product of 
many years of developing a common framework for measuring market risk that is 
rooted historically in the pioneering work of Markowitz toward the modern portfolio 
theory (Phelan, 1995, p. 6). The practice of quantifying risk on the basis of value-at-
risk developed along side of management practices over trading functions, where 
there is a need to mark-to-market trading positions frequently at prevailing prices 
and rates in order to project income over short horizons. 

                                                 
34 Details of these solutions can be found in their respective articles. See also Hamilton (1994) 
chapter 22. 
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The RiskMetrics VaR measures are based on a forecast variance-covariance matrix. 
RiskMetrics simply consists of three large variance-covariance matrices of the 
returns including major FX rates, money market rates, equity indices, bonds and 
some key commodities. The first is a one-day matrix (i.e. a variance-covariance 
matrix relevant for VaR measures corresponding to one-day returns) the second is a 
one-month (25-day) matrix and the third is a “regulatory” matrix for compliance 
with the Basle Committee proposals (Alexander, 2000, p. 278). RiskMetrics data is 
based on moving average methods, which are standard statistical estimation 
techniques where it is usual to take the current moving average estimate of variance 
(or covariance) to be the one-step-ahead forecast. J.P. Morgan has applied the 
exponentially weighted moving average (EWMA) methodology to produce 1-day 
and 1-month matrices. To provide VaR measures of holding periods other than one 
day or one month it is possible to follow the Basle Committee recommendations and 
use the square root of time rule. This unrealistic assumption of constant volatility 
which underlies this rule generally means that such VaR measures can substantially 
over estimate the risk in tranquil times, and underestimate it in periods of high 
volatility. Those who are unwilling to accept VaR measures based on the assumption 
that current levels of volatility will remain the same forever are therefore limited by 
RiskMetrics. There is no other possibility to produce VaR measures for 1-week 
holding periods or indeed any holding period other than 1-day or 1-month. However 
a good VaR model will produce VaR numbers for every holding period from 1-day 
(or less than a day), 2-days, 3-days up to 1-year or even more.  
 
The RiskMetrics “regulatory” matrix is constructed exactly according to the Basle 
Committee proposals, and is based on equally weighted moving averages over the 
past year of data. Equally weighted averages is a standard statistical method for 
estimating unconditional variances and covariances, but when it is applied to 
financial markets the “ghost effects” which result from this type of conditionally 
heteroskedastic data can pose substantial problems (Alexander, 2000, p.  280). When 
there is a large movement in the underlying time series such as a jump in market 
price, an equally weighted average of squared returns will jump up the very next 
day. This is as an accurate reflection of the clustering behaviour of volatility in 
financial markets. However, there are serious problems with this approach: Firstly, a 
large, squared return will continue to keep volatility estimates high for exactly one 
year (or however long the moving average is) whereas the underlying volatility will 
have long ago returned to normal levels. Secondly, exactly after the passage of the 
time length of the moving average from a major market event that caused the spike, 
the equally weighted volatility estimate will jump down again as abruptly as it 
jumped up. But there is nothing special about that day - what is seen is just a ghost 
of what happened one year ago, a correction in the estimate which is by then long 
over due. If the average is taken over fewer observations, this correction will be 
much bigger in short-term volatility estimates.  Because of this “ghost effect”, any 
extreme event, which has occurred during the last year, could have a big effect on 
VaR measures based on the RiskMetrics regulatory matrix. Whether the VaR 
measures are increased or decreased by the “ghost effect” depends on the portfolio 
construction (Alexander, 2000, p. 281).  
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Being aware of the problems induced by the “ghost effect” produced in equally 
weighted averages, J.P. Morgan decided to construct the daily and monthly matrices 
that use exponentially weighted moving averages (EWMA). Because past 
observations are weighted by applying EWMA, they are actually weighted by the 
smoothing constant (decay factor) λ which is between 0 and 1. The weighting is 
done by multiplying an observation that occurred n days ago by λn , which is very 
small for large n. Thus extreme events have less of an impact on variances and 
covariances as they move further into the past, and the “ghost effects” should no 
longer appear. This is indeed the case in the RiskMetrics one-day matrix, where 
EWMA is applied to squared daily returns. The RiskMetrics model assumes that 
returns are generated according to the following model (RiskMetrics, 1996, p. 73): 
 
ri,t = σi,tεi,t   εi,t ~ N(0, 1) 
                                       (4.143) 
εt ~ MVN(0, Rt)     εt = [ε1t, ε2t, …, εNt] 
 
where Rt is an N x N time dependent correlation matrix. The variance of each return, 
σi,t

2
 and the correlation between returns, ρij,t, are functions of time. The property that 

the distribution of returns is normal given a time dependent mean and correlation 
matrix assumes that returns follow a conditional normal distribution - conditional on 
time. The term µi is excluded from the Equation 4.143 because the RiskMetrics 
presumes that the daily mean return is equal to zero. For a given set of T returns, the 
equally and exponentially weighted standard deviation is calculated as (RiskMetrics, 
1996, p. 78): 
 
Equally weighted standard deviation: 
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Exponentially weighted standard deviation (EWMA): 

∑
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The exponentially weighted moving average model depends on the parameter λrr (0 < 
λ < 1) that is often referred to as the decay factor or smoothing constant. This 
parameter determines the relative weights that are applied to the observations and 
the effective amount of data used in estimating volatility.  
 
The EWMA estimator in Equation 4.145 is constructed by using an approximation 
(RiskMetrics, 1996, p. 79): 
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These two expressions are equivalent in the limit, i.e., as T→ ∞. For purpose of 
comparison to the equally weighted factor 1/T, the more appropriate version of the 
EWMA is: 
 

∑
=

−−
T

j

jt

1

11 / λλ        (4.147) 

 
rather than (1-λ)λt-1. When λ = 1, the above Equation 4.147 collapses to 1/T. 
 
An attractive feature of the exponentially weighted estimator is that it can be written 
in recursive form, which is used as a basis for making volatility forecasts. In order to 
derive the recursive form, it is assumed that an infinite amount of data is available. 
Assuming that the sample mean is zero, period t+1 variance forecast, given the data 
available at time t (one day earlier) is derived as (RiskMetrics, 1996, p. 81): 
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The 1-day RiskMetrics volatility forecast is given by the expression: 
 

2
,1

2
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The subscript  “t+1|t” is read as the time t+1 forecast given information up to and 
including time t. The subscript “t|t-1” is read in a similar fashion. This notation 
underscores the fact that the variance is treated as time-dependent. The fact that this 
period’s variance forecast depends on last period’s variance is consistent with the 
observed autocorrelation in squared returns observed in the empirical studies (see 
e.g. Engle, 1982, Engle, Takatoshi, Lin, 1990, Day, Lewis, 1992).  
 
RiskMetrics produces volatility and correlation forecasts for almost 100.000 time 
series (Allen, Boudoukh, Saunders, 2004, p. 236). Since these parameters comprise a 
covariance matrix, the optimal decay factors for each variance and covariance 
forecast are not independent of one another. RiskMetrics applies one optimal decay 
factor to the entire covariance matrix. That is, RiskMetrics uses one decay factor for 
the daily volatility and correlation matrix and one for the monthly volatility and 
correlation matrix. This decay factor is determined from individual variance 
forecasts across all time series. 
 



150   MARKET RISK IN TRANSITION COUNTRIES – VaR APPROACH 
 

 

The definition of the time t+1 forecast of the variance of the return rt+1 made one 

period earlier is simply [ ] 2
|1

2
1 tttt rE ++ = σ , the expected value of the squared return 

one-period earlier. The variance forecast error is 2
|1

2
1|1 ttttt r +++ −= σε . It follows that 

the expected value of the forecast error is zero, i.e., 

0)()( 2
|1

2
1|1 =−= +++ ttttttt rEE σε . Based on this relation a natural requirement for 

choosing λ is to minimize average squared errors. When applied to daily forecasts of 
variance, this leads to the (daily) root mean squared prediction error (RMSE), which 
is given by (RiskMetrics, 1996, p. 244): 
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In practice, the optimal decay factor λ* is found by searching for the smallest RMSE 
over different values of λ. The goal is to find the decay factor that produces the best 
forecasts (i.e., minimizes the forecast measures). With each time series it processes, 
RiskMetrics associates an optimal  decay factor that minimizes the root mean 
squared error of the variance forecast. For the daily and monthly data sets only one 
optimal decay factor from 100.000 time series is calculated. RiskMetrics calculates 
the one optimal decay factor in the following steps (RiskMetrics, 1996, p. 99):  
 

iλ̂  = ith optimal decay factor 

N (i = 1, 2,…, N) =  number of time series in the RiskMetrics database 

τi = ith RMSE associated with iλ̂ ( τi is the minimum RMSE for the ith time series)  

 
1. Finding Π, the sum of all N minimal RMSE’s, τi’s: 
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2. Relative error measure is given by: 
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3. The weight фi is defined as: 
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where 
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4. The optimal decay factor is defined as: 
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As can be seen, the optimal decay factor applied by RiskMetrics is a weighted 
average of individual optimal decay factors where the weights are a measure of 
individual forecast accuracy. By applying this methodology to both daily and 
monthly returns RiskMetrics found that the optimal decay factor for the daily data 
set is 0.94, and the optimal decay factor for the monthly data set is 0.97 
(RiskMetrics, 1996, p. 100). 
 
The elements of the one-day matrix appear very similar to GARCH one-day 
forecasts. However, there are substantial difficulties to producing EWMA estimates 
relevant for the RiskMetrics one-month forecasts. Since the EWMA methodology is 
only really applicable to one-step-ahead forecasting, the correct approach would be 
to smooth 25-day returns, but there is not enough data. Instead, J.P. Morgan have 
applied exponential smoothing to the 25-day equally weighted variance, which will 
be full of 25-day “ghost effects”. But this has the effect of augmenting the very 
”ghost features” which they seek to diminish: After a major market movement the 
equally weighted 25-day series jumps up immediately - as does the GARCH 25-day 
series. But the RiskMetrics monthly data hardly reacts at all, at first, and then it 
gradually increases over the next 25 days to reach a maximum exactly 25 days after 
the event. The proof of this is simple (Alexander, 2000, p.  282): 
 
Setting the st

2 to be a 25-day historic variance series, the monthly variance forecast 

is equal to 2
1

2
1
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2
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occurrence of “ghost effect”, st
2 drops dramatically, and so the maximum value of 

2ˆ tσ  will occur at that point. 

 
Although backtests performed first by J. P. Morgan and later by other market 
participants lent support to the RiskMetrics model, its basic assumptions were 
shown to be questionable from several points of view (Alexander, 2000, Pafka, 
Kondor, 2001). Moreover, the existence of fat tails in real market data is in a clear 
conflict with RiskMetrics' assumption of normally distributed returns, which can 
lead to a gross underestimation of risk. Even the makers of RiskMetrics system 
acknowledge that there are serious limitations to using the restrictive assumptions of 
the system (Zangari, 1996b, p. 7-8), (Zangari, 1996c, p. 26). Furthermore, serious 
doubt has recently been raised as to the stability and information content of the 
empirical covariance matrices used by the model for calculating the risk of 
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portfolios (Galluccio, Bouchaud, Potters, 1998, Laloux, Cizeau, Bouchaud, Potters, 
1999, Plerou, Gopikrishnan, Rosenow, Amaral, Stanley, 1999). 
 
The key to understanding the reasonably successful performance of RiskMetrics, can 
be found in the paper by Nelson (1992) who showed that even misspecified models 
can estimate volatility rather accurately. More explicitly, Nelson (1992) shows that 
if the return generating process is well approximated by diffusion, a broad class of 
even misspecified ARCH models can provide consistent estimates of the conditional 
volatility. Since RiskMetrics can be considered as an IGARCH(1,1) model the 
results of Nelson (1992) offer a natural explanation for the success of RiskMetrics in 
estimating volatility. Actually, in the RiskMetrics framework, this estimate is used 
as a one-day ahead volatility forecast, nevertheless it seems that this does not 
significantly worsen its accuracy. However, if one uses this estimate to calculate (as 
often required by regulators) a multiperiod forecast using the simple square root of 
time rule, the quality of the forecast is bound to decline with the number of periods.  
 
It is very often found that despite the presence of fat tails in the data, for many 
distributions the 5% quantile is roughly -1.65 times the standard deviation (Pafka, 
Kondor, 2001, p. 4). For example, the 5% quantile of the Student’s t distribution 
with 7 degrees of freedom (which is leptokurtic and has a kurtosis of 5 similar to the 
typical kurtosis of returns in financial markets) is -1.60, very close to -1.65, or, 
conversely, the -1.65 percentile is 4.6%. For higher significance levels (e.g. 99%) 
the effect of fat tails becomes much stronger, and therefore the VaR is seriously 
underestimated if one assumes normality. For example, the 1% quantile of the 
Student’s t distribution considered above is -2.54, which is significantly larger than 
under the normality assumption (-2.33), while the percentile corresponding to -2.33 
is 1.43%. Therefore, it can be concluded that the satisfactory performance of 
RiskMetrics in estimating VaR is mainly the artefact of the choice of the 
significance level of 95%. However, existing capital adequacy regulations require 
99% confidence, and at this level RiskMetrics systematically underestimates risk 
(Pafka, Kondor, 2001, p. 5). 
 
 
4.2.6 Simulation approach to calculating VaR - Monte Carlo simulation 
 
Monte Carlo methods are a widely used class of computational algorithms for 
simulating the behaviour of various physical and mathematical systems. They are 
distinguished from other simulation methods by being stochastic, that is 
nondeterministic in some manner - usually by using random numbers (or more often 
pseudo-random numbers) - as opposed to deterministic algorithms. In general, 
Monte Carlo methods are used in mathematics to solve various problems by 
generating suitable random numbers and observing that fraction of the numbers 
obeying some property or properties. The method is useful for obtaining numerical 
solutions to problems that are too complicated to solve analytically. The most 
common application of the Monte Carlo method is Monte Carlo integration. 
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Deterministic methods of numerical integration operate by taking a number of 
evenly spaced samples from a function. In general, this works very well for 
functions of one variable. However, for functions of vectors, deterministic 
quadrature methods can be very inefficient. To numerically integrate a function of a 
two-dimensional vector, equally spaced grid points over a two-dimensional surface 
are required. For instance a 10x10 grid requires 100 points. If the vector has 100 
dimensions, the same spacing on the grid would require 10100 points – that's far too 
many to be computed. 100 dimensions is by no means unreasonable, since in 
finance, a "dimension" is usually equivalent to a degree of freedom. Monte Carlo 
methods provide a way out of this exponential time-increase. As long as the function 
in question is reasonably well-behaved, it can be estimated by randomly selecting 
points in 100-dimensional space, and taking some kind of average of the function 
values at these points. By the law of large numbers, this method will display 
convergence – i.e. quadrupling the number of sampled points will halve the error, 
regardless of the number of dimensions (Campbell, Lo, MacKinlay, 1997, p. 386). 
 
A refinement of this method is to somehow make the points random, but more likely 
to come from regions of high contribution to the integral than from regions of low 
contribution, such as Latin Hypercube sampling (Vose, 2000, p. 59). In other words, 
the points should be drawn from a distribution similar in form to the integrand. 
Understandably, doing this precisely is just as difficult as solving the integral in the 
first place, but there are approximate methods available: from simply making up an 
integrable function thought to be similar, to one of the adaptive routines. A similar 
approach involves using low-discrepancy sequences instead - the quasi-Monte Carlo 
method. Quasi-Monte Carlo methods can often be more efficient at numerical 
integration because the sequence "fills" the area better and samples more of the most 
important points that can make the simulation converge to the desired solution more 
quickly (Papageorgiou, Traub, 1996, p. 63-64). 
 
Monte Carlo method does not require truly random numbers to be useful. Much of 
the most useful techniques use deterministic, pseudo-random sequences, making it 
easy to test and re-run simulations. The only quality usually necessary to make good 
simulations is for the pseudo-random sequence to appear "random enough" in a 
certain sense. What this means depends on the application, but typically quasi 
random numbers should pass a series of statistical tests (Holton, 2003, 207-209). 
Testing that the numbers are uniformly distributed or follow another desired 
distribution when a large enough number of elements of the sequence is considered 
one of the simplest. 
 
In many applications of Monte Carlo, the underlying process is simulated directly, 
and there is no need to even write down the differential equations that describe the 
behaviour of the system. The only requirement is that the mathematical system be 
described by probability density functions (pdf’s). Once the pdf's are known, the 
Monte Carlo simulation can proceed by random sampling from the pdf's. Many 
simulations are then performed and the desired result is taken as an average over the 
number of observations (which may be a single observation or perhaps millions of 
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observations). In many practical applications, the statistical error (variance) for this 
average result can be predicted, and hence an estimate can be obtained of the 
number of Monte Carlo trials that are needed to achieve a given error (Holton, 1998, 
p. 61). Assuming that the evolution of the particular system can be described by 
probability density functions (pdf's), then the Monte Carlo simulation can proceed 
by sampling from these pdf's, which necessitates a fast and effective way to generate 
random numbers uniformly distributed on the interval [0,1]. The outcomes of these 
random samplings, or trials, must be accumulated or tallied in an appropriate manner 
to produce the desired result, but the essential characteristic of Monte Carlo is the 
use of random sampling techniques (and perhaps other algebra to manipulate the 
outcomes) to arrive at a solution of the problem at hand. In contrast, a conventional 
numerical solution approach would start with the mathematical model of the system, 
discrediting the differential equations and then solving a set of algebraic equations 
for the unknown state of the system. It is natural to think that Monte Carlo methods 
are used to simulate random, or stochastic, processes, since these can be described 
by pdf's. However, this coupling is actually too restrictive because many Monte 
Carlo applications have no apparent stochastic content, such as the evaluation of a 
definite integral or the inversion of a system of linear equations. However, in these 
cases and others, the desired solution can be posed in terms of pdf's, and while this 
transformation may seem artificial, this step allows the system to be treated as a 
stochastic process for the purpose of simulation and hence Monte Carlo methods can 
be applied to simulate the system.  
 
The primary components of a Monte Carlo simulation method include the following:  

• Probability distribution functions (pdf's) - the mathematical system must be 
described by a set of pdf's.  

• Random number generator - a source of random numbers uniformly 
distributed on the unit interval must be available.  

• Sampling rule - a prescription for sampling from the specified pdf's, 
assuming the availability of random numbers on the unit interval, must be 
given.  

• Scoring (or tallying) - the outcomes must be accumulated into overall tallies 
or scores for the quantities of interest.  

• Error estimation - an estimate of the statistical error as a function of the 
number of trials and other quantities must be determined.  

• Variance reduction techniques - methods for reducing the variance in the 
estimated solution to reduce the computational time for Monte Carlo 
simulation  

• Parallelization and vectorization - algorithms to allow Monte Carlo methods 
to be implemented efficiently on advanced computer architectures.  

 
In the world of risk management Monte Carlo method is a name for any approach to 
risk measurement that involves the simulation of a parametric model for risk-factor 
changes. As such, the method can be either conditional or unconditional, depending 
on whether the model adopted is a dynamic time series model or a static 
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distributional model. The first step of the method is the choice of the model and the 
calibration of this model to historical data Xt-n+1,…, Xt. This should be a model from 
which the simulations can be readily performed, since in the second stage, m 
independent realizations of risk-factor changes are generated for the next period. 
Similarly to the historical simulation method the simulated realizations from the loss 
distribution are obtained. The simulated loss data are used to estimate risk measures, 
often this is done by simple order statistic, but it would also be possible to base the 
inference on fitted univariate distributions, or to use an extreme value model to 
model the tails of the simulated realizations (McNeil, Frey, Embrechts, 2005, p. 52). 
Illustration of the process for Monte Carlo VaR calculation is given in Figure 20. 
 
Figure 20 – Illustration of the Monte Carlo VaR calculation 
 
 
 
 
 
 
 
 
 
 
 
 
 
Repetition 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Marrison Chris: The Fundamentals of Risk measurement. New York: McGraw Hill, 

2002. p.119 
 
The use of the Monte Carlo means that the researcher is free to choose the number 
of simulations m, with the only constraint being the computational time. Generally m 
is chosen to be much larger than n so that more accurate estimation of empirical 
VaR are obtained than in the case of historical simulation VaR (McNeil, Frey, 
Embrechts, 2005, p. 52). 
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The underlying stochastic process that governs the dynamics of asset prices may be 
calibrated for the asset’s future values. A popular, simple stochastic process is the 
geometric Brownian motion given by (Jorion, 2001, p. 292): 
 
dSt/St = µtdt + σtdWt       (4.156) 
 
where St is the asset price at time t, Wt is a standard Wiener process, and µt and σt are 
the drift and the volatility parameters, respectively. The solution to this stochastic 
differential equation is (Bao, Lee, Saltoglu, 2004, p. 5): 
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Simulating St amounts to simulating Wt. Since the goal is to predict one-step-ahead 
VaR, it can be written as (Bao, Lee, Saltoglu, 2004, p. 5): 
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where zt is simulated from a standard normal distribution. The calculation is 
performed N times, from which the empirical α-th quantile of rt ≡ ln (St/St - 1) is 
estimated. When σt

2 is estimated from the unconditional variance 
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2 )1( −− +−+= ttt λσελωσ , it is known as EWMA Monte Carlo (EWMA MC). 

The Monte Carlo method does not solve the problem of finding a distributional 
function for a random variable and any results that are obtained will only be as good 
as the model that is used (Jorion, 2001, p. 226). In a market risk context a dynamic 
model seems desirable and a GARCH structure with a heavy tailed conditional 
distribution might be considered. For large portfolios the computational cost of the 
Monte Carlo approach can be considerable, as every simulation requires the 
revaluation of the portfolio. This is particularly problematic if the portfolio contains 
many derivatives that cannot be priced in closed, analytical form. However, to create 
experiments using a Monte Carlo method is fraught with dangers. Each market 
variable has to be modelled according to an estimated distribution as well as the 
relationships between distributions (such as correlation or less obvious non-linear 
relationships, for which copulas are becoming prominent). Using the Monte Carlo 
approach means one is committed to the use of such distributional assumptions and 
the estimations one makes (Jorion, 2001, p. 226). These distributions can become 
inappropriate, and if unconditional variances and covariances are used as inputs into 
Monte Carlo simulation it reacts slowly to changing market conditions. To build and 
keep current a Monte Carlo risk management system requires continual re-
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estimation, a good reserve of analytic and statistical skills, and non-automated 
decision-making. 
 
 
4.3 Non-parametric and semi-parametric approaches to calculating 

Value-at-Risk  
 
The non-parametric approaches seek to estimate VaR without making strong 
assumptions about the distribution of profits and losses or returns. The essence of 
these approaches is to let the data speak for itself as much as possible, and use the 
empirical distribution of returns and not some assumed theoretical distribution to 
estimate the VaR. All non-parametric approaches are based on the underlying 
assumption that the near future will be sufficiently like the recent past (Pritsker, 
2001, p. 3). This means that the data from the recent past can be efficiently used to 
forecast risks in the near future, an assumption that may or may not be valid in any 
given context. 
 
The first and the most popular non-parametric approach is historical simulation 
(HS). Historical simulation is, loosely speaking, a histogram-based approach, and it 
is conceptually simple, easy to implement, very widely used, and has a fairly good 
historical track record. Non-parametric estimation can also be performed by using 
more complex methods such as; bootstrap methods and non-parametric density 
estimation methods.  
 
 
4.3.1 Historical simulation 
 
Historical simulation is the most well known member of nonparametric family of 
VaR models. The main characteristic of nonparametric approach is the calculation of 
VaR without making apriori assumptions about the shape of the distribution of 
realized returns. Nonparametric approach, unlike the parametric approach that a 
priori assigns a theoretical distribution to a random variable, empirically determines 
the distribution of the observed variable, and the VaR figure is easily computed via 
order statistics from the desired quantile of the cumulative distribution function. 
Historical simulation is based on two elementary assumptions (Manganelli, Engle, 
2001, p. 10):  

1) future will be similar to the past, from the data obtained from the recent 
past, the risk in the near future can be calculated,  

2) realized returns are independently and identically distributed (IID) 
through time. 

 
Unfortunately, these assumptions do not hold in practice, as it will be tested and 
proven in remainder of the book. When comparing only classical historical 
simulation and normally distributed mean-variance VaR, it is the authors’ opinion 
that historical simulation approach to calculating VaR would be better suited for 
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calculating market risk in capital market of transition countries for several reasons 
(Žiković, 2005b, p. 74): 

1) volatilities of stocks are time varying (heteroskedastic), 
2) coefficients of correlation between stocks are not stationary, they often 

change very dramatically and suddenly in very short time intervals, 
3) distribution of returns of stocks is asymmetric and has fat tails, 
4) existence of sufficient number of extreme events. 

 
In his study Žiković (2006a) finds that simple historical simulation with longer 
observation windows gives satisfactory unconditional coverage when applied to 
illiquid markets of EU member candidate states. 
 
The main advantages of historical simulation compared to the other methods of 
estimating VaR are (Dowd, 2002, p. 72): 

- the method is theoretically simple, 
- it is easy to implement in practice, 
- data used can be easily obtained from stock exchanges or from specialized 

companies, such as Bloomberg, Reuters and DataStream, 
- obtained VaR figures are simple to present to the top management, 
- since it is not parametric in its’ nature, asymmetry and kurtosis can be easily 

included in the calculation of VaR, 
- there is no need for the calculation of the variance-covariance matrices, 

which greatly lowers the computational and time burden. 
 
Besides all the stated advantages, historical simulation also exhibits some serious 
problems when compared to other methods of calculating VaR. The principle 
disadvantage of historical simulation method is that it computes the empirical 
cumulative distribution function of the portfolio returns by assigning an equal 
probability weight of 1/N to each day's return. This is equivalent to assuming that 
the risk factors, and hence the historically simulated returns are independently and 
identically distributed (IID) through time. This assumption is unrealistic because it is 
known that the volatility of asset returns tends to change through time, and that 
periods of high and low volatility tend to cluster together (e.g. Bollerslev, 1986, 
Schwert, 1989b). One of the most serious critiques on account of historical 
simulation is the fact that it completely depends on the past events and data that is 
used as a basis for the calculation of VaR. Another serious problem of historical 
simulation that is not noticeable in the developed markets but is clearly present in 
the transition countries is the lack of a larger number of observations that is required 
for the historical simulation. Other potential drawbacks of historical simulation are 
(Dowd, 2002, p. 72-73): 

• if the time period used for the calculation of VaR is characterized by low 
volatility and includes no extreme events, historical simulation can 
underestimate the true level of risk, 

• if the time period used for the calculation of VaR is characterized by high 
volatility and includes numerous extreme events, historical simulation can 
overestimate the true level of risk, 
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• historical simulation is known to react poorly to one-time changes that 
happen in the observation period, such as currency devaluation, 

• the method can react very slowly to sudden changes in the market, 
especially if the observation period used for the calculation of VaR is long, 

• the method is known to suffer from “ghost effect”, meaning that high losses 
that occurred in relatively distant past continue to effect the level of VaR 
until they disappear from the observation period (Allen, Boudoukh, 
Saunders, 2004, p. 49), 

• VaR is limited to the highest losses that happened in the observation period 
disregarding the current market volatility. 

 
Banks often rely on VaR's from historical simulations (HS VaR). The value of VaR 
is calculated as the 100cl percentile or the (T+1)cl order statistic of the set of pseudo 
portfolio returns. In principle it is easy to construct a time series of historical 
portfolio returns using current portfolio holdings and historical asset returns. In 
practice, however, historical asset prices for the assets held today may not be 
available. Examples where difficulties arise include derivatives, individual bonds 
with various maturities, private equity, new public companies, merged companies 
and so on. For these cases “pseudo” historical prices must be constructed using 
either pricing models, factor models or some ad hoc considerations (Pallotta, Zenti, 
2000, p. 5). The current assets without historical prices can for example be matched 
to “similar” assets by capitalization, industry, leverage, and duration. Historical 
pseudo asset prices and returns can then be constructed using the historical prices on 
these substitute assets (Jorion, 2001, p. 221): 
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Historical simulation VaR can be expressed as: 
 

( )( )pTrVaRHS w
p

TT 1|1 +≡− +         (4.160) 

 
where ( )( )pTrw 1+ is taken from the set of ordered pseudo returns 

{ })(),...,2(),1( Trrr www . If (T+1)p is not an integer value then the two adjacent 

observations can be interpolated to calculate the VaR. Historical simulation has 
some serious problems, which have been well-documented (Hendricks, 1996, 
Pritsker, 2001). Perhaps most importantly, historical simulation does not properly 
incorporate conditionality into the VaR forecast. The only source of dynamics in the 
HS VaR is the fact that the sample window is updated with the passing of time. 
However, this source of conditionality is minor in practice.  
 
Historical simulation is based on the concept of rolling windows. The process of 
calculating VaR by historical simulation begins by choosing a length (n) of the 
window of observations, which usually ranges from two months to two years. 
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Calculated portfolio returns within the observation window are sorted and the 
desired quantile is given by the return xi that satisfies the condition that j out of n 
observations do not exceed it. The probability that j out of n observations do not 
exceed some fixed value of observed variable x follows a binomial distribution 
(Kendall, Stuart, 1973, p. 348): 
 

jnj xFxF
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It follows that the probability of at least i observations in the selected sample not 
exceeding x also follows a binomial distribution (Kendall, Stuart, 1973, p. 348): 
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Gi(x) is the distribution function of the order statistic and thus also of  the VaR. 
 
To compute the VaR the following day, the whole window is moved forward by one 
observation and the entire procedure is repeated. Historical simulation method 
assigns equal probability weight of 1/N to each observation. This means that the 
historical simulation estimate of VaR at the cl confidence level corresponds to the 
N(1-cl) lowest return in the N period rolling sample. Because a crash is the lowest 
return in the N period sample, the N(1-cl) lowest return after the crash, turns out to 
be the (N(1-cl)-1) lowest return before the crash. If the N(1-cl) and (N(1-cl)-1) 
lowest returns happen to be very close in magnitude, the crash actually has almost 
no impact on the historical simulation estimate of VaR for the long positions in a 
portfolio of securities.  
 
Although historical simulation makes no explicit assumptions about the distribution 
of portfolio returns, an implicit assumption is hidden behind the procedure: the 
distribution of portfolio returns doesn’t change within the window. From this 
implicit assumption several problems may arise in using this method in practice. 
From the assumption that all the returns within the observation window used in 
historical simulation have the same distribution, it follows that all the returns of the 
time series also have the same distribution: if yt-window,...,yt and yt+1-window,...,yt+1 are 
independently and identically distributed (IID), then also yt+1 and yt-window have to be 
IID, by the transitive property. Another serious problem of the historical simulation 
is the fact that for the empirical quantile estimator to be consistent, the size of 
observation window must go to infinity (Manganelli, Engle, 2001, p. 10). The length 
of the observation window hides another serious problem. Forecasts of VaR under 
historical simulation are meaningful only if the historical data used in the 
calculations have the same distribution. The length of the window must satisfy two 
contradictory properties: it must be large enough, in order to make statistical 
inference significant, and it must not be too large, to avoid the risk of taking 
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observations outside of the current volatility cluster. Clearly, there is no easy 
solution to this problem. If the market is moving from a period of low volatility to a 
period of high volatility, VaR forecasts based on the historical simulation will 
underestimate the true risk of a position since it will take some time before the 
observations from the low volatility period leave the observation window. 
 
From the Equation 4.160 it can be seen that HS VaR changes significantly only if 
the observations around the order statistic ( )( )clTrw 1+  change significantly. For 

instance, when using a 250-day moving window for a 1% HS VaR, only the second 
and third smallest returns will matter for the calculation. Including a crash in the 
sample, which now becomes the smallest return, may therefore not change the HS 
VaR very much if the new second smallest return is similar to the previous one. 
Moreover, the lack of a properly-defined conditional model in the historical 
simulation methodology implies that it does not allow for the construction of a term 
structure of VaR. Calculating a 1% 1-day HS-VaR may be possible on a window of 
250 observations, but calculating a 10-day 1% VaR on 250 daily returns is not. 
Often the 1-day VaR is simply scaled by the square root of time, but this 
extrapolation is only valid under the assumption of IID daily returns, which is not 
valid, as proven in the chapter 4.1.2.5. 
 
Finally, VaR forecasts based on historical simulation may present predictable jumps, 
due to the discreteness of extreme returns. If VaR of a portfolio is computed using a 
rolling window of N days and today’s return is a large negative number, it is easy to 
predict that the VaR estimate will jump upward, because of today’s observation. The 
same effect (reversed) will reappear exactly after N days, when the large observation 
drops out of the observation window (Manganelli, Engle, 2001, p. 10). 
 
 
4.3.2 Historical simulation using non-parametric density estimation 
 
Evaluating the trade-off between long and short sample observation windows is 
complicated by the fact that the historical simulation approach does not produce a 
statistical measure of precision. In fact, as Kupiec (1995) notes, typical VaR models 
of all types lack the ability to measure this precision or goodness-of-fit property ex 
ante. Kupiec (1995) shows how an approximation to the variance of estimated VaR 
can provide additional useful information about the VaR estimate. Jorion (1996) 
suggests that VaR always be reported with confidence intervals and shows that it is 
possible to improve the efficiency of VaR estimates using their standard errors. 
Quantifying the uncertainty in the estimated VaR for an unknown return distribution 
would address the issues raised by Kupiec (1995). Pritsker (1996) notes that it is 
possible to compute a standard error in a Monte Carlo VaR analysis. Pritsker 
suggests that a Monte Carlo estimate and standard error can be used to construct a 
confidence interval around the estimate from any VaR model. This approach, while 
feasible, may not be desirable for several reasons, but the most obvious is the fact 
that parametric representation introduces unwanted assumptions about the portfolio 
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return distribution. A nonparametric representation requires bootstrapping from the 
set of sample observations to obtain a standard error. Unfortunately, bootstrapping 
approach cannot generate any information about the tail of the return distribution 
beyond the smallest sample observation. The usefulness of a precision measure goes 
beyond the point made by Kupiec (1995). With information about the precision of 
the estimate, it would be easier to evaluate whether large deviations of returns from 
the predicted VaR are evidence of model problems. This potentially has an impact 
on regulatory capital. Under the Basle market risk rules a bank is required to 
maintain additional capital if the daily return losses were greater than daily VaR 
more than four times in a year (Basle Committee on Banking Supervision, 1996b, p. 
7). The relation between the number of “exceptions” and the severity of the penalty 
is based on the assumption that the VaR is estimated without error. However, 
supervisors of banks may discount exceptions if they can be explained as not arising 
from model error. To the extent that the bank and its supervisor can use precision 
information to explain such exceptions as being unrelated to the quality of the VaR 
model, the supervisor may elect not to require the greater capital requirements. 
 
Density estimation deals with the construction of an estimated density function from 
observed data (Silverman, 1986, p. 1). It also deals with associated issues such as 
how to present a data set, how to investigate its properties (e.g., such as possible 
bimodality, skewness, etc.), and how to use density estimates as inputs in other tasks. 
Density estimation comes in two basic forms: parametric density estimation, which 
imposes the distribution on the data, and non-parametric density estimation, which 
tries to use the empirical data and let it shape the distribution.  
 
The most common way of representing data is the histogram. Given an origin x0 and a 
binwidth (or bandwidth) h, the bins of the histogram can be defined as the intervals 
(Dowd, 2002, p. 251): 
 
[x0 + mh, x0 + (m + l)h]        (4.163) 
 
which have been arbitrarily chosen to be closed on the left (i.e., so data on the left 
boundary are included in the interval) and open on the right (i.e., so data on the right 
boundary are excluded from the interval). The histogram itself is then defined as 
(Dowd, 2002, p. 251): 
 
f(x) = (1/nh)#Xi        (4.164) 
 
where # Xi , is the number of observations in the same bin as x. The choice of both 
origin X0, and binwidth h, can make a big difference to the final results, particularly 
the binwidth. There is a trade-off in choosing binwidth: a wider binwidth smoothes 
out irrelevant noise in the data, but a binwidth that is too wide smoothes out valuable 
information as well. Histograms predominantly depend on arbitrary judgements, and 
can be misleading. Histograms can also be inefficient, and the discontinuities of 
histograms can sometimes cause problems when they are used as surrogate density 
functions in other routines. 
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Fortunately, there are many alternatives to histograms, and one of these is the so-
called naive estimator. The naive estimator replaces Equation 4.164 with: 
 
f(x) = (1/2nh)[No. of X1,…, Xn in range (x-h, x+h)]     (4.165) 
 
Although similar to Equation 4.164, the naïve estimator does not depend on a 
choice of origin x0. The naive estimator constructs a histogram by treating each 
observation as falling at the centre of a sampling interval, and that is way there is no 
need to specify the origin x0. However, the choice of binwidth remains making the 
estimates discontinuous. It is helpful to express the naive estimator in terms of 
weighting functions. If the weight function is defined by (Silverman, 1986, p. 12): 
 
                  1/2  if  |x| < 1               (4.166) 
w(x) = 
                  0    if  |x| ≥ 1 
 
the naive estimator can be written as: 
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It is clear that the naive estimator is determined by a rather naive, choice of weight 
function. A superior alternative to both the histogram and naive estimators is the 
kernel estimator. The kernel is a generalisation of the naive estimator, and replaces the 
naive weight function given in Equation 4.166 with a kernel function K(x) that 
satisfies the condition (Dowd, 2002, p. 253):  
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K(x) is the probability density function, but it can also be a discrete or piecewise 
function. Given the kernel function, the kernel estimator can be defined as: 
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Provided that K (x) is non-negative everywhere, the kernel estimator will be well 
behaved with smooth derivatives, and this means that the kernel estimator given in 
Equation 4.169 can be treated as a probability density function. 
 
Kernel places mini-density functions around each data point, and the kernel itself is 
the sum of these “mini-densities” and has a total area underneath it of 1. The kernel 
estimator can be pictured as placing “bumps” around each of the recorded 
observations. The shape of these bumps is determined by the kernel function K(x) and 
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the bandwidth h determines their width. As the sample size grows, the net sum of all 
the smoothed points approaches the true probability density function, whatever that 
may be, irrespective of the method of smoothing the data. This is because the 
influence of each point becomes arbitrarily small as the sample size grows, so the 
choice of kernel imposes no restrictions on the results asymptotically. In a small 
sample there may be differences, which can be examined by using different kernels. 
The smoothing is accomplished by spreading each data point with a kernel, usually a 
probability density function centred on the data point, and the bandwidth. To use 
kernels, a kernel function K(x) and a bandwidth h have to be chosen. In making the 
decisions about choice of a kernel function K(x) and a bandwidth h, one should 

remember that the objective is to find an estimator f̂  that is close to the true but 
unknown density function f, and a natural measure of the closeness of fit at a point x 
is the mean square error (MSE) (Dowd, 2002, p. 254): 
 

))(ˆvar()]()(ˆ[)]()(ˆ[))(ˆ( 22 xfxfxfExfxfExfMSEx +−=−=   

         ))(ˆvar())](ˆ([ 2 xfxfbias +=     (4.170)  
   
  

where ))(ˆvar( xf  is the variance of )(ˆ xf . The MSE is thus the bias squared plus 
the variance, which indicates that there is a trade-off between the bias and variance 

of )(ˆ xf . The global measure (mean integrated square error - MISE) of the closeness 

of fit of )(ˆ xf  to f(x) can be found by integrating the MSE over x.  
 

dxxfxfEfMISE ∫ −= 2)]()(ˆ[)ˆ(  

    ∫∫ +−= dxxfdxxfxfE ))(ˆvar()]()(ˆ[ 2     (4.171) 

 
The kernel function that minimises the MISE is the following, known as the 
Epanechnikov kernel (Silverman, 1986, p. 39-40): 
 

        [3/(4√5)](1-0.2x2)         -√5 ≤ x ≤  √5 
Ke(x) =                                        if    (4.172) 
                                0                          otherwise 
 
However, there are also many other useful kernels that are nearly as efficient as the 
Epanechnikov kernel (Silverman, 1986, p. 43). These include the biweight, 
triangular, rectangular and Gaussian kernels, which are respectively: 
  
Biweight kernel: 

(15/16)(1-x2)2       |x| < 1     (4.173) 
0                          otherwise 
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Triangular kernel: 
1 - |x|       |x| < 1     (4.174)  
0                          otherwise 

 
Rectangular kernel: 

1/2         |x| < 1     (4.175) 
0                          otherwise 

 
Gaussian kernel: 

     ( ) 25.02/1 xe−π       (4.176) 
 
After having chosen a kernel function, there still remains the issue of optimal 
bandwidth (h). One obvious solution is to choose h subjectively, by plotting out kernel 
estimates for different bandwidths, and choosing the one that seems right for the data 
at hand. However, there are also certain automatic rules, which include least squares 
and likelihood cross-validation, for choosing h if the suitable kernel function is 
determined. For example, when using Gaussian kernel the optimal bandwidth is 
(Silverman, 1986, p. 45): 
 
Hopt = 1.06σn-1/5       (4.177) 
 
which enables the estimate of the optimal bandwidth directly from the data, using a 
sample estimate of σ. It is important to stress that using of a Gaussian kernel density 
estimator does not assume that the data follow a normal or any other distribution nor 
make the ultimate estimation of the VaR normal or even parametric. To compensate 
for potential oversmoothing of the data, Silverman suggests the modified optimal 
bandwidth: 
 
hopt = 1.06An-1/5 

         (4.178) 
A =  min[σ, interquartile range/1.34] 
 
Silverman's findings suggest that this bandwidth should provide a close fit for a wide 
range of distributions.          
 
The kernel approach is intuitive and straightforward to apply, and its properties are 
fairly well understood. However, it does have one practical problem. Since the 
bandwidth is fixed across the whole sample, a kernel that provides a good degree of 
smoothing over the central part of the distribution will often leave spurious noise in 
the tail. But if this noise is smoothed, there is a danger that the central part of the 
distribution will oversmooth and useful information will be lost: it is difficult to deal 
with the tail properly without oversmoothing the main part of the distribution. 
 



166   MARKET RISK IN TRANSITION COUNTRIES – VaR APPROACH 
 

 

A solution to this problem is to use adaptive methods in which the bandwidth is 
allowed to depend on how the observations are distributed. One such method is 
based on the variable kernel estimator (Dowd, 2002, p. 256): 
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where dj,k is the distance between Xj and the kth nearest of the other data points. The 
bandwidth of the kernel placed on the observation Xj is proportional to dj,k. In this 
way sparser data will have flatter kernels placed on them. 
 
Other solutions to the problem of oversmoothing the central or tail part of the 
distribution include: nearest neighbour method, in which the bandwidth applied to an 
observation depends on the distance between that observation and its near 
neighbours; maximum penalised likelihood methods, which are maximum likelihood 
methods adjusted for the roughness of the empirical density function; and orthogonal 
series estimators, which are Fourier transform methods35. 
 
Naïve estimator and especially kernel functions methods are tailor-made for VaR 
estimation, and density estimation theory suggests that they should produce better 
non-parametric estimates of VaR than those expected under historical simulation. The 
historical simulation approach is essentially density estimation with a histogram and a 
histogram is rarely the best way to handle a data set. This reasoning suggests that 
some of the more advanced density estimation approaches — particularly kernel 
methods — should produce superior VaR estimates. This is the logic behind the 
historical kernel approach to VaR proposed by Butler and Schachter (1998). This type 
of approach suggests the VaR can be estimated by first estimating the density of a given 
set of return observations, using some preferred density estimation approach. Having 
estimated the density function, it can then be inverted to infer the percentile or 
quantile that corresponds to the VaR. The confidence internals for VaR estimates can 
then be obtained by using some appropriate method (e.g., using order statistics, 
bootstrap or Monte Carlo approaches to confidence-interval estimation). Butler and 
Schachter (1998) applied a historical kernel approach to real trading portfolios, and 
found that the adaptive kernel approaches generally led to higher VaR estimates, but 
the choice of kernel otherwise made relatively little difference to VaR estimates 
(Butler, Schachter, 1998, p. 380-381). To the extent that the choice of kernel did 
make a difference, they concluded that the best ones were the adaptive Epanechnikov 
and adaptive Gaussian kernels. 
 
 
 
 

                                                 
35 For more on these methods, see Silverman (1986, ch. 2 and 5). 
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4.3.3 Bootstrapping 
 
A broad interpretation of bootstrap methods argues that they are defined by 

replacing an unknown distribution function F, by its empirical estimator, F̂ , in a 
functional form for an unknown quantity of interest (Hall, 1994, p. 2342). The name 
bootstrap was introduced by Efron (1979), who pointed out that bootstrap methods 

(in the sense of replacing F with F̂ ) had been in use long before his paper. But he 
was the first to perceive the breadth of this class of methods. The vast range of 
applications of bootstrap methods would not be possible without a facility for 
extremely rapid simulation. The elementary question that arises when using 
bootstrap methods is how does one decide which functionals of F should be 
estimated. Given the functional ft it is necessary to determine the value t0 of t that 
solves the equation (Hall, 1994, p. 2345): 
 
E{ft(F0, F1)|F0} = 0                      (4.180) 
 

where F = F0 denotes the population distribution function and 1
ˆ FF =  is the 

distribution function of the sample. Conditioning on F0 serves to stress that the 
expectation is taken with respect to the distribution F0. Equation 4.180 is called the 
population equation because the properties of the population are required if the 
equation is to be solved exactly. For example, if θ0 = θ(F0) denotes a true parameter 
value, such as the rth power of a mean (Hall, 1994, p. 2345): 
 

{ }r
xxdF∫= )(00θ         (4.181) 

 

Let )(ˆ
1Fθθ =  be the bootstrap estimator of θ0 such as the rth power of the sample 

mean: 
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Where 1
ˆ FF =  is the empirical distribution function of the sample from which X  is 

computed. To obtain an approximate solution of the population Equation 4.180 the 
following assumptions are made. Let F2 denote the distribution function of a sample 
drawn from F1 (conditional on F1). Replacing the pair (F0, F1) in Equation 4.180 by 
(F1, F2) transforms the population equation into (Hall, 1994, p. 2346): 
 
E{ft(F1, F2)|F1} = 0               (4.183) 
 
Equation 4.183 is called the sample equation since everything is known about it, 

once the sample distribution function F1 is known, and its solution 0̂t  is a function 

of the sample values. The 0̂t  and E{ft(F1, F2)|F1} are called the bootstrap estimators 
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of t0 and E{ft(F0, F1)|F0} respectively. They are obtained by replacing F0 by F1 in the 
formulae for t0 and E{ft(F0, F1)|F0}. There are two approaches of treating F1 and F2, 
suitable for nonparametric and parametric problems respectively. In both 
approaches, inference is based on a sample H of n random (independent and 
identically distributed) observations of the population. In the nonparametric case, F1 
is simply the empirical distribution function of H.; that is, the distribution function 
of the distribution that assigns mass n-1 to each point in H. The associated empirical 
probability measure assigns to a region R a value equal to the proportion of the 
sample that lies within R. Similarly, F2 is the empirical distribution function of a 
sample drawn at random from the population with distribution function F1; that is, 
the empirical distribution of a sample H* drawn randomly, with replacement, from 
H. If the population is denoted by H0 a nest of sampling operations is formed: H is 
drawn at random from H0 and H* is drawn at random from H (Hall, 1994, p. 2346). 
 
In the parametric case, F0 is assumed completely known up to a finite vector λ0 of 
unknown parameters. To indicate this dependence, it can be written, )(0 0λFF = , an 

element of  a class { }Λ∈λλ ,)(F  of possible distributions. Let λ̂  be an estimator of 

λ0 computed from H, often (but not necessary) the maximum likelihood estimator. 

Since λ̂  is a function of sample values, it can be also written as λ(H). In this case 

)ˆ(1 λ
FF = , the distribution function obtained by replacing “true” parameter values by 

their sample estimates. Let H* denote the sample drawn at random from the 
distribution with distribution function 

)ˆ(λ
F  (not simply drawn from H with 

replacement), and let *)(*ˆ Hλλ =  denote the version of λ̂  computed from H* 

instead of H. Then it can be written, 
*)ˆ(2 λ

FF = . Unfortunately with time series data 

the standard bootstrap method relevant for IID observations is not valid. If returns 
are not IID, bootstrapping and can lead to biased results, because the presence of 
autocorrelation and heteroskedasticity in the data is ignored. Some of the suggested 
alternatives are: recursive bootstrap, moving block bootstrap and the stationary 
bootstrap (Maddala, Li, 1996, p. 464). 
 
4.3.3.1 The recursive bootstrap 
 
To deal with the lagged dependent variables and serially correlated errors with a 
well specified structure (for example ARMA(p,q) model) a recursive bootstrap 
method introduced by Freedman and Peters (1984) can be used. In the recursive 
bootstrap method the model is estimated by OLS, or some other consistent method. 
From this fitted model the residuals are obtained and resampled. With the resampled 
residuals, the bootstrap samples are generated recursively. For example, in case of a 
regression model with AR(1) errors: 
 
yt = βxt + ut  
ut = ρut-1 + et   
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where et ~ IID(0, σ2), the first equation is estimated by OLS, and then using the 
estimated residuals tû , the tρ̂ is estimated using Cochrane-Orcutt or Prais-Winstein 

procedures and the is tê obtained. The tê are resampled and using a recursive 

procedure the tû are generated, as well as the bootstrap sample on yt. 

 
4.3.3.2 Moving block bootstrap 
 
Application of the recursive bootstrap methods is straightforward if the error 
distribution is specified to be a stationary ARMA(p,q) process with known p and q. 
However, if the structure of serial correlation is not tractable or is misspecified, the 
residual based methods will give inconsistent estimates (if lagged dependent 
variables are present in the system). Other approaches that do not require fitting the 
data into parametric form have been developed to deal with general dependent time 
series data. Carlstein (1986) first introduced the idea of bootstrapping non-
overlapping blocks of observations rather than the individual observations. A more 
general bootstrap procedure applicable to stationary time series data, in which the 
blocks of observations are overlapping was introduced later by Künsch (1989). The 
methods of Carlstein (non-overlapping blocks) and Künsch (overlapping blocks) 
both divide the data of n observations into blocks of length l and select b of these 
blocks (with repeats allowed) by resampling with replacement all the possible 
blocks. Since there are only b blocks in the Carlstein procedure and n - l + 1 blocks 
in Künsch procedure, the probability of missing entire blocks in the Carlstein 
scheme is far greater and for this reason it is not popular in practice. 
 
4.3.3.3 The stationary bootstrap 
 
The pseudo time series generated by the moving block method is not stationary, 
even if the original series {xt} is stationary. To correct this, Politis and Romano 
(1994) suggested the stationary bootstrap method. The basic steps for the stationary 
bootstrap are the same as those of the moving block bootstrap. However, there is a 
major difference between the sampling schemes of the moving block bootstrap and 
the stationary bootstrap. The stationary bootstrap resamples the data blocks of 
random length, where the length of each block has a geometric distribution with 
parameter p, while the moving block bootstrap resamples blocks of data of the same 
length. Presently there does not exist a way to optimally choose the parameters k and 
p, and their choice is left to individual judgement. 
 
 
4.3.4 Age-weighted Historical simulation  
 
When relaxing the assumption that returns are IID, it might be reasonable to assume 
that simulated returns from the recent past better represent today portfolio's risk than 
returns from the distant past. Boudoukh, Richardson, and Whitelaw, BRW hereafter, 
used this idea to introduce a generalization of the historical simulation and assign a 
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relatively higher amount of probability weight to returns from the more recent past 
(Boudoukh, Richardson, Whitelaw, 1998).  
 
The BRW approach combines RiskMetrics and historical simulation methodologies, 
by applying exponentially declining weights to past returns of the portfolio 
(Boudoukh, Richardson, Whitelaw, 1998, p. 64). Each of the most recent N returns 
of the portfolio, yt,  yt-1, ..., yt-N+1, is associated a weight, 
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 respectively36. After the probability weights 

are assigned, VaR is calculated based on the empirical cumulative distribution 
function of returns with the modified probability weights. The basic historical 
simulation method can be considered as a special case of the more general BRW 
method in which the decay factor λ is set equal to 1. 
 
The BRW method involves a simple modification of the historical simulation. 
However, the modification makes a large difference (see e.g. Boudoukh, 
Richardson, Whitelaw, 1998, Pallotta, Zenti, 2000, Pritsker, 2001). In a recent study 
Žiković (2006b) finds that the BRW approach is superior to historical simulation for 
a range of confidence levels even in small and illiquid markets of EU member 
candidate states. Under the BRW approach, the most recent return receives 
probability weight of just over 1% for λ = 0.99 and a weight of over 3% for λ = 0.97. 
In both cases, this means that if the most recent observation is the worst loss of the N 
days, it automatically becomes the VaR estimate at 1% confidence level.  
 
The BRW method appears to remedy one of the main problems of historical 
simulation since very large losses are immediately reflected in VaR forecasts. The 
simplest way to implement BRW approach is to construct a history of N hypothetical 
returns that the portfolio would have earned if held for each of the previous N days,  
rt-1,…, rt-N and then assign exponentially declining probability weights wt-1,…, wt-N to 
the return series37. Given the probability weights, VaR at the cl percent confidence 
level can be approximated from G(.; t;N), the empirical cumulative distribution 
function of r based on return observations rt-1,…, rt-N  (Pritsker, 2001, p. 6). 
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36 The role of the term Nλ
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 is to ensure that the weights sum to 1. 

37 The weights sum to 1 and are exponentially declining at rate λ (0 < λ ≤ 1) 
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Because the empirical cumulative distribution function, unless smoothed, for 
example via kernel smoothing as suggested by Butler and Schachter (1998), is 
discrete, the solution for VaR at the cl confidence level will typically not correspond 
to a particular return from the return history. Instead, the BRW solution for VaR at 
the cl percent confidence level can be between a return that has a cumulative 
distribution that is less than cl, and one that has a cumulative distribution that is 
higher than cl. These returns can be used as estimates of the BRW VaR model at 
confidence level cl. The estimate that understates VaR at the cl percent confidence 
level (upper limit) is given by (Pritsker, 2001, p. 7): 
 

)),;(|},...{inf(),,|( 11 clNtrGrrrclNtBRW Ntt
u ≥∈= −−−λ   (4.185) 

 
and the estimator of lower limit is given by: 
 

)),;(|},...{sup(),,|( 11 clNtrGrrrclNtBRW Ntt
o ≤∈= −−−λ   (4.186) 

 
where λ is the exponential weight factor, N is the length of the history of returns 
used to compute VaR, and cl is the VaR confidence level. 
 

),,|( clNtBRW u λ is the lowest return of the N observations whose empirical 

cumulative probability is greater than cl, and ),,|( clNtBRW o λ is the highest 
return whose empirical cumulative probability is less than cl. 
 
The main issue in evaluation of BRW based VaR, as a risk measure, is the extent to 
which VaR forecasts based on the BRW method respond to changes in the 
underlying risk factors. It is important to know under what circumstances risk 

estimates increase when using the ),,|( clNtBRW u λ  estimator. The result is 
provided in the following proposition (Pritsker, 2001, p. 25): 
 

If ),,( NtBRWr u
t λ>  then ),,(),,1( NtBRWNtBRW uu λλ ≥+ . 

 
When BRW VaR is estimated for returns during time period t+1, the return at time 

t−N is dropped from the sample, the return at time t receives weight Nλ
λ

−
−

1

1
 and the 

weight on all other returns is λ times their earlier values. Consequently, r(cl) is 
defined as: 
 

}),;(|,...1,{)( 11 clNtrGNirclr tt ≤== −−  

 
To verify this proposition, it suffices to examine how much probability weight the 

VaR estimate at time t+1 places below ),,( NtBRW u λ . In the paper by Pritsker 
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(2001) there is an error in the proposition and the correct proposition is (Žiković, 
2006b, p. 7):  
Case 1: )(clrr Nt ∉−  - in this case, since by assumption, )(clrrt ∉  then: 

 

)),,((),,1);,,(( NtBRWGNtNtBRWG uu λλλλ <+ . Therefore, 
 

),,()),,1;(|},...{inf(),,1( 1 NtBRWclNtrGrrrNtBRW u
Ntt

u λλλ ≥≥+∈=+ −−

 
Case 2: )(clrr Nt ∈−  - in this case, since )(clrrt ∈  by assumption, then: 

 

)),,((),,1);,,(( NtBRWGNtNtBRWG oo λλλλ <+ . Therefore, 
 

),,()),,1;(|},...{sup(),,1( 1 NtBRWclNtrGrrrNtBRW o
Ntt

o λλλ ≤≤+∈=+ −−

 
The proposition shows that when losses at time t are bounded below the BRW VaR 
estimate at time t, the BRW VaR estimate for time t+1 will indicate that risk at time 
t+1 is no greater than it was at time t. To understand the importance of this 
proposition, it suffices to examine the case when today's BRW VaR estimate for 
tomorrow's return is conditionally correct, but since risk changes with returns, 
tomorrow's return will influence risk for the day after tomorrow. Under these 
circumstances, an important question is what is the probability that a VaR estimate 
that is correct today will increase tomorrow. The answer provided by the proposition 
is that tomorrow's VaR estimate will not increase with probability 1−cl. So, for 
example, if cl is equal to 1%, then a VaR estimate that is correct today will not 
increase tomorrow with probability 99%. 
 
Although the BRW approach suffers from the explained logical inconsistency, this 
approach still represents a significant improvement over the historical simulation, 
since it drastically simplifies the assumptions needed in the parametric models and it 
incorporates a more flexible specification than the historical simulation approach. To 
better understand the connection to historical simulation and the assumptions behind 
the BRW approach, BRW quantile estimator can be expressed as (Manganelli, 
Engle, 2001, p. 11): 
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where );( Nfi λ  are the weights associated with return yi and I(·) is the indicator 

function. If NNfi /1);( =λ , BRW quantile estimator equals the historical 

simulation estimator. The main difference between BRW approach and historical 
simulation is in the specification of the quantile process. With historical simulation 
each return is given the same weight, while with the BRW approach returns have 
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different weights, depending on how old the observations are. Strictly speaking, 
none of these models is completely nonparametric, since a parametric specification 
is proposed for the quantile. Boudoukh, Richardson, Whitelaw in their original paper 
set λ equal to 0.97 and 0.99, as in their framework no statistical method is available 
to estimate this unknown parameter (Boudoukh, Richardson, Whitelaw, 1998, p. 
66). 
 
 
4.3.5 Hull-White model of Historical simulation 
 
One common approach to calculating VaR involves assuming that daily percentage 
changes in the underlying market variables are conditionally multivariate normal 
with the mean percentage change in each market variable being zero. This is often 
referred to as the “model building” approach. If the daily change in the portfolio 
value is linearly dependent on daily changes in market variables that are normally 
distributed, its probability distribution is also normal. The variance of the probability 
distribution, and hence the percentile of the distribution corresponding to VaR, can 
be calculated in a straightforward way from the variance-covariance matrix for the 
market variables. In circumstances where the linear assumption is inappropriate, the 
change in the portfolio value is often approximated as a quadratic function of 
percentage changes in the market variables. This allows the first few moments of the 
probability distribution of the change in the portfolio value to be calculated 
analytically so that the required percentile of the distribution can be estimated. An 
alternative approach to handling non-linearity is to use Monte Carlo simulation. On 
each simulation trial daily changes in the market variables are sampled from their 
multivariate distribution and the portfolio is revalued. This enables a complete 
probability distribution for the daily change in the portfolio value to be determined. 
The advantage of the model building approach is that the underlying variance-
covariance matrix can be updated using an exponentially weighted moving average 
(EWMA) model. The disadvantage is that the market variables are assumed to be 
conditionally multivariate normal. The model building approach takes no account of 
skewness or kurtosis in the distributions of market variables and no account of non-
linear correlations between market variables. Historical simulation, by contrast, has 
the advantage that it accurately reflects the historical multivariate probability 
distribution of market variables. Its main disadvantage is that it incorporates no 
volatility updating. 
 
Hull and White (1998a) approach provides one way of bridging the gap between the 
model building and historical simulation approaches. It shows how the model 
building approach can be modified to incorporate some of the attractive features of 
the historical simulation approach. The probability distribution of a market variable, 
when scaled by an estimate of its volatility, is often found to be approximately 
stationary. This suggests that historical simulation can be improved by taking 
account of the volatility changes experienced during the period covered by the 
historical data. For example, if the current volatility of a market variable is 1.5% per 
day and two months ago the volatility was only 1% per day, the data observed two 
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months ago understates the changes that can be expected at present. On the other 
hand, if the volatility was 2% per day two months ago the reverse is true (Hull, 
White, 1998a, p. 284). 
 
Hull, White (1998a) premise is that the relevant regime change is encapsulated in 
the volatility measure, thus all that is needed for a historical data to reflect current 
market conditions is to update the sample using today’s volatility. This ensures that 
the historical sample is a more appropriate reflection of current market conditions. 
The intuitive reason for this updating system is that it provides an inclusion of 
today’s volatility in VaR forecasts. This is an attempt to refute the argument that is 
often posed for the irrelevance of past data, and the fact that market conditions 
change dynamically and can therefore not be reflected in a historical risk estimate. 
The Hull, White (1998a) procedure for forecasting VaR for day T is the following. 
Let rt,i be the historical return on asset i on day t in a historical sample, σt,i is the 
historical EWMA forecast of the volatility of the return on asset i for day t, made at 
the end of day t - 1, and σT,i is the most recent forecast of the volatility of asset i. The 
historical returns in the data set, rt,i, are replaced with volatility-adjusted returns, zt,i , 
given by (Hull, White, 1998a, p. 284): 
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Actual returns in any period t are therefore increased (or decreased), depending on 
whether the current forecast of volatility is greater (or less than) the EWMA forecast 
of volatility for period t. The set of returns needed for historical simulation are 
calculated by using Equation 4.159 instead of the original data set rt,i, and the HS 
VaR is estimated in the traditional way, by assigning equal weights to the{zi,t} set. 
 
The Hull-White approach has a number of advantages relative to the traditional 
equally weighted and the BRW age-weighted approaches (Hull, White, 1998a): 
• It takes account of volatility changes in a natural and direct way, whereas 

equally weighted historical simulation ignores volatility changes and the BRW 
approach treats volatility changes in a restrictive manner. 

• It produces risk estimates that are appropriately sensitive to current volatility 
estimates, and so enables the incorporation of information from EWMA 
forecasts into HS VaR estimation. 

• It obtains VaR forecasts that can exceed the maximum loss in the historical data 
set; in periods of high volatility, historical returns are scaled upwards, and the 
return series used in the Hull-White procedure will have values that exceed 
actual historical losses. This is a major advantage over traditional historical 
simulation, which prevents the VaR forecasts from being any bigger than the 
losses in historical data set. 

• Empirical evidence presented by Hull and White indicates that their approach 
produces superior VaR estimates to the BRW approach (Hull, White, 1998a, p. 
19). 
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4.3.6 Hybrid Historical simulation (HHS) 
 
A new hybrid (semi-parametric) VaR model proposed in this book, which will 
hereafter be called “Hybrid historical simulation” (HHS), is based on the 
combination of nonparametric bootstrapping of standardized residuals and 
parametric GARCH volatility forecasting. The HHS model is designed to combine 
the best features of nonparametric and parametric VaR approaches, but it is designed 
to do so in a simple and straightforward way. The HHS model is designed to 
successfully capture the two most conspicuous characteristics of financial asset 
returns, namely strong time varying volatility and excess kurtosis relative to the 
normal distribution. In the HHS model leptokurtosis and asymmetry are accounted 
for by the nonparametric part of the model, while the parametric – ARMA GARCH 
part of the model is suggested for removing autocorrelation and heteroskedasticity 
from the data. ARMA GARCH volatility modelling is introduced to create IID 
observations, suitable for bootstrapping. While successfully dealing with 
leptokurtosis, asymmetry, autocorrelation and heteroskedasticity in the data, the 
HHS model developed in this book is not as computationally intensive as some other 
approaches that are based on extreme value theory, mixtures of distributions or 
stable Paretian distributions. Furthermore, HHS model is far easier to understand 
and implement in practice. The number of parameters that have to be estimated in 
HHS model is small, and its’ number is determined by the GARCH specification 
structure. My suggestion is to use the simplest GARCH specification possible to 
keep the model as robust as possible to misspecification and model risk. 
 
While greatly differing in approaches, some of the models discussed so far are able 
to account for strong time varying volatility and excess kurtosis relative to the 
normal distribution. Simplistic methods, such as historical simulation and parametric 
variance-covariance approaches, cannot adequately account for the volatility 
clustering and usually perform poorly in practice (Manganelli, Engle, 2001, 
Balaban, Bayar, Faff, 2004). The least sophisticated parametric method, which can 
still capture the volatility clustering and leptokurtosis in the data, is the basic 
GARCH model. In academic community the inadequacy of the normal AR(1) 
GARCH(1,1) model for in and out of sample forecasting became obvious not long 
after its inception, and was superseded by replacing the normality assumption by the 
Student's t distribution, whereby the degrees of freedom parameter is interpreted as 
an additional distributional shape parameter and is estimated jointly with the 
location and scale model parameters. While better than a normal GARCH model, 
particularly for more extreme (1% or less) VaR thresholds, the Student's t GARCH 
can also be improved by generalizing both the parametric form of the time varying 
volatility and the distributional assumption (Mittnik, Paolella, 2000, Giot, Laurent, 
2004). 
 
There now exist a wide variety of generalizations of the functional form of volatility, 
and a large number of candidate distributions for the innovation sequence. Several 
combinations of distributions have proven to be capable of capturing most of the 
various empirical features of returns and delivering reasonably accurate out of the 
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sample predictions of the entire distribution of a future returns or just particular 
quantiles, as is needed for VaR forecasting38. Unfortunately, these approaches have 
the drawbacks of requiring a relatively large number of parameters that cannot be 
solved in a closed, analytical form, and can result in negative scale parameters, both 
of which exacerbate the numeric computation of the maximum likelihood estimate, 
and bars use of less sophisticated software. Furthermore, the more volatility models 
get complex, estimated parameters become unstable making such models vulnerable 
to parameter misspecification and model risk. Similarly, the EGARCH model 
introduced by Nelson (1991), which possesses some theoretical advantages over the 
GARCH model, is known to be very problematic in practice, with the choice of 
starting values being extremely critical for successful likelihood maximization 
(Frachot, 1995, Franses, van Dijk, 1996). 
 
A similar critique that applies to more complex volatility models also applies to the 
distributional assumption of the VaR model, in that the density (required for the 
likelihood function) and distribution function (for computing the VaR) may not be 
expressible in closed analytical form. Examples include the hyperbolic distribution 
and Gauss-Laplace mixtures (Haas, Mittnik, Paolella, 2005), non-central Student's t 
(Campbell, Siddique, 1999, Broda, Paolella, 2006), geometric stable and stable 
Paretian distributions. These distributions require complex numeric procedures such 
as numeric integration, special function libraries, fast Fourier transform methods, 
multivariate root finding, etc., which cannot be found in most of the software 
packages and require considerable intellectual effort. Needles to say that the increase 
in number of parameters inevitably leads to parameter instability and estimation 
problems. 
 
Nonparametric approaches require less effort and can easily account for 
leptokurtosis, asymmetry and to some extent even volatility clustering in the 
financial data. On the negative side, nonparametric approaches depend too much on 
the historical data set, react slowly to changes in the market and are subject to 
predictable jumps in their forecasts of volatility.  The simplest nonparametric 
approach, historical simulation, provides a flexible and intuitive framework for risk 
analysis, but its basic version uses only the realized path of returns and therefore 
produces risk indicators with high variance. When the goal is to model returns for a 
horizon longer than data frequency, simulation approaches, such as, Monte Carlo 
simulation or bootstrapping techniques can be seen as sensible choices. Usually, the 
approach based on Monte Carlo simulation uses a set of stochastic differential 
equations for generating returns over the time horizon. Monte Carlo simulation uses 
arbitrary distributional assumptions, imposing the structure of risk that it is supposed 
to investigate. Unlike Monte Carlo simulation, the bootstrapping approach can be 
seen as a variation of the historical simulation approach, where it resamples from the 
empirical distribution of portfolio returns. Bootstrapping can be viewed as mixing 
Monte Carlo and historical simulation. This method guarantees that the multivariate 
properties of original data are preserved and is flexible enough to incorporate an 

                                                 
38 see Alexander, 2001, Ch. 9 and 10; Bao, Lee, Saltoglu, 2004. 
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update of both mean and volatility. Unfortunately, bootstrapping is based on a rather 
strict assumption that excess returns are identically and independently distributed. If 
returns are not IID, they are unsuitable for bootstrapping and can lead to biased 
results, because, for example, the eventual presence of autocorrelation and volatility 
clusters is ignored. To avoid this problem, it is possible to modify the basic 
bootstrapping scheme by weighting the realized observations. 
 
As was discussed previously in chapter 4.3.4, Boudoukh, Richardson, Whitelaw 
(1998) showed how weighting of historical observations can be performed by 
exponentially decreasing the impact of past observations. The second, more 
appealing way is by incorporating volatility updating in future scenarios, and here 
there are several options. Hull and White (1998) show how to take into account 
volatility clusters into the basic historical simulation method (without 
bootstrapping), by scaling observations by the ratio of current over past conditional 
EWMA volatility forecasts. McNeil and Frey (2000) propose a bootstrapping 
approach, where the residuals of the ARMA-GARCH model follow an Extreme 
value (EV) distribution. Of course, instead of using an ARMA model, mean 
updating can be incorporated in future scenarios using different models, ranging 
from simple EWMA techniques to structural models.  
 
The new HHS approach developed in this book is based on the modification of 
recursive bootstrap procedure developed by Freedman and Peters (1984). This 
means that the proposed HHS model does not impose any theoretical distribution on 
the data since it uses empirical (historical) distribution of the return series. Two 
main problems with empirical data are the heteroskedasticity and presence of 
autocorrelation. In order to successfully implement bootstrapping the returns should 
not have any of these characteristics, meaning that they should be identically and 
independently distributed (IID). In the HHS model autocorrelations can be removed 
by modelling the conditional mean as an ARMA process. Heteroskedasticity can be 
removed by modelling returns as a second moment by using GARCH process. In 
modeling of residuals the proposed HHS approach uses the general specification of 
the form:  
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zt = εt /σt                                       
 
where φ is some functional form, x is a vector of explanatory variables (observed at 
time t or lagged), εt is the disturbance term with zero mean and standard deviation σt, 
which follows a GARCH(p, q) process. Because of its simplicity and a good track 
record, HHS model uses the ARMA process as the functional form of φ.  
 
The HHS model can be implemented in practice by applying the following steps:   
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1) Any autocorrelation in the returns is removed by fitting an ARMA(p,q) model to 
the historical observations, making the residuals identically and independently 
distributed: 
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2) GARCH(p,q) model is fitted to the obtained residuals: 
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3) To obtain standardized residuals {zt}, residuals obtained from ARMA(p,q) fitting 

{εt} are divided by conditional GARCH(p,q) volatility forecasts that where 
calculated for the same point in time: 
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Under the GARCH hypothesis the set of standardized residuals are independently 
and identically distributed and therefore suitable for bootstrapping. To ensure that 
the standardized residuals are truly IID, diagnostic tests, specifically Ljung-Box Q 
test for standardized residuals and squared standardized residuals, and Engle’s 
ARCH test are applied. The p-statistics of model parameters indicate whether the 
GARCH model is well specified. If the obtained standardized residuals are not IID, 
some other autoregressive conditional heteroskedasticity model should be applied 
(i.e. IGARCH, GJR-GARCH, EGARCH, APARCH or higher order GARCH 
model). 
 
4) Identically and independently distributed standardized residual returns {zt} are 
bootstrapped for a large number of times, e.g. 30,000 times, to obtain a standardized 
historical time series Θ. Because bootstrapping is applied to IID residuals the results 
are unbiased: 
 
z = {z1, z2, …, zt}  zi ∈  Θ         (4.193) 
 
5) After obtaining the bootstrapped standardized residuals the calculation of VaR is 
straightforward. The HHS model uses the Hull-White idea of volatility updating the 
standardized residuals {zt} and scales them by the latest GARCH volatility forecast 
( 1ˆ +tσ ) to obtained a series of historical residuals that have been updated by 

forecasted volatility to reflect the current market conditions { 1ˆ +tz }.  
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6) The simulated returns 1ˆ +tr are obtained by using updated historical residuals 

{ 1ˆ +tz }, in the Equation (4.190): 
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HHS model allows for the VaR at the arbitrary confidence levels cl to be obtained in 
several ways. HHS VaR can be approximated from G(.; t;N), the empirical 

cumulative distribution function of { tr̂ } based on return observations Ntt rr −− ˆ,...,ˆ 1 , 

and the procedure is the same as the one used for obtaining BRW VaR forecasts 
described in chapter 4.3.4. HHS VaR can also be calculated by applying a smooth 
density estimator such as kernel. Following the results obtained by Silverman (1986) 
and Butler and Schachter (1998) the best choice would be the adaptive Gaussian or 
adaptive Epanechnikov kernel. 
 
HHS model has another attractive characteristic; the observation period from which 
the standardized residuals are obtained can be modeled in two ways. The first option 
is to let observation period freely grow with the passing of time, resulting in slightly 
more conservative VaR estimates, but which are extremely resilient to extreme 
events. The second option is to arbitrary set the length of the observation period, 
allowing the VaR estimates to be less conservative but also less appropriate for 
capturing extreme events. The choice of length of the observation period is purely 
arbitrary but in author’s opinion should in no case be shorter than one year of daily 
data. Testing of the HHS model, its backtesting performance, and characteristics are 
presented in chapter 6 of the book. 
 
Hybrid historical simulation (HHS) has a number of attractions: 

• It combines the non-parametric attractions of nonparametric approaches with a 
sophisticated, parametric GARCH treatment of volatility.  

• It successfully captures autocorrelation and heteroskedasticity in the data. 
• It is far easier to implement than other approaches such as extreme value 

theory, mixtures of distributions or stable Paretian distributions that are 
successful at capturing asymmetry and kurtosis. 

• Number of parameters that have to be estimated is small compared to other 
approaches, and depend on the choice of volatility forecasting model. 

• It is computationally fast. 
• It minimizes the “ghost effect” since the extreme events in the data set are 

minimized via volatility updating. For example, an extreme event in the data 
set that happened during a period of increased volatility will have much less 
influence on the VaR forecasts during the tranquil times because the current 
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GARCH driven volatility forecasts actually decrease the value of such 
extreme events. 

• Residuals do not follow any predefined distribution making the model more 
robust to model risk.  

• Bootstrapping is applied to IID residuals, making the results unbiased. 
• Unlike most of the nonparametric approaches, HHS model uses all available 

information about the dynamics of the asset price assigning equal weight to 
positive and negative returns (response to the positive and negative shocks can 
be made asymmetric by using an Asymmetric instead of Symmetric GARCH 
model). 

• Unlike most of the nonparametric approaches, HHS model allows the VaR 
forecasts that can exceed the maximum historical loss in the data set. HHS 
VaR forecasts are not limited by the maximum loses that occurred in the 
historical data set. 

• It instantaneously reacts to changes in the market volatility regime unlike most 
of the nonparametric models that, depending on the length of the observation 
window react rather slowly. 

• It maintains the correlation structure in the return data without modelling the 
variance covariance matrix or assuming the conditional distribution of asset 
returns as is the case with parametric approaches. 
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5 BACKTESTING MARKET RISK MODELS 
 
 
One of the most important tasks in risk management is backtesting. Backtesting is 
the process of quantitative VaR model evaluation. It uses a formal statistical 
framework to determine whether VaR model's risk estimates are consistent with the 
assumptions on which the model is based. This consists of verifying whether actual 
loses are in line with projected losses (Jorion, 2001, p. 129). It involves 
systematically comparing the history of VaR forecasts with associated portfolio 
returns. Backtesting is essential for risk managers who need to check if the VaR 
models are well calibrated. If the VaR model is not well calibrated, it should be re-
examined for faulty assumptions, wrong parameters or inaccurate modelling. 
Backtesting is also paramount to central banks due to the Basle Committee’s 
allowance of VaR models in the internal rating approach used for calculating capital 
requirements.  
 
 
5.1 Backtesting preconditions 
 
The first requirement in backtesting is to obtain a suitable data set. This is not as 
easy as it sounds, since return data is typically calculated according to standard 
principles of accounting prudence, and this often means that assets are understated in 
value and fluctuations of their values are smoothed over. However, for risk 
measurement purposes it is more important that the return data reflect underlying 
volatility rather than accounting prudence.  
 
The return data also need cleaning to get rid of components that are not directly 
related to current or recent market risk-taking. Such components include fee income, 
hidden profits/losses from trades carried out at prices different from the mid bid-ask 
spread, return earned from other forms of risk-taking (e.g., high yields on bonds with 
high credit risks), and unrealised returns and provisions against future losses. It is 
also necessary to take account of the impact of the internal funding regime that 
underlies the institution's trading activity, and the impact of intra-day trading on 
both returns and risk measures39. In order to compare returns against market risk the 
return data should either be cleaned so that it reflects the return at the end of the day 
market risk positions, or hypothetical return data obtained by revaluing trading 
positions from one day to the next should be used. 
 
Having obtained the clean data, it can be very useful to draw up a chart showing the 
time series of both daily returns and risk measures. Such a chart shows how these 
series have behaved over time, and gives a good visual indication of the behaviour 
of the outliers or exceptions. It also shows how many exceptions there were, how 
big they were, and whether they show any pattern. Such a chart gives a good 
indication of possible underlying causes (Dowd, 2002, p. 180): 
                                                 
39 For more on these issues see Deans, 2000, p. 265-269. 
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• A relatively large number of extreme observations indicate that the risk 
measures are probably too low. 

• A relatively small number of tail observations, or none at all, indicates that 
the risk measures are probably too high. 

• If there are major differences between high and low exceptions, then the 
return measures might be biased. 

• If the risk lines show flatness, or excessive smoothness, then risk measures 
are not being updated sufficiently quickly. 

• If returns are close to zero much of the time, then there is relatively little 
trading taking place and this suggests that positions are illiquid. 

• Abrupt changes in risk lines suggest changes in volatility or changes in the 
way risks are estimated. 

 
The errors in VaR estimation depend on the reasonabless of assumptions made when 
calculating VaR.  
 
Possibly the most important assumption to be made is the choice of the theoretical 
distribution that describes the distribution of empirical data. The assumptions about 
the theoretical distribution of returns, as well as other assumptions made when 
calculating VaR, can be judged by whether the VaR measure provides the correct 
conditional and unconditional risk coverage. A VaR measure achieves the correct 
unconditional coverage if the portfolio losses exceed the cl percent VaR 1-cl percent 
of the time. Because the losses are expected to exceed cl percent VaR 1-cl percent of 
the time, a VaR measure that satisfies the unconditional coverage is correct on 
average.  
 
Correct conditional coverage means that as the risk of a portfolio changes daily, so 
should the VaR estimate change, and provide the correct VaR figure daily, and not 
on average. Although it is probably unrealistic for VaR to provide the exact 
coverage for every time period, a good VaR measure should at least go so far as to 
increase, when the risk of a portfolio appears to be increasing. 
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5.2 Statistical backtests based on the frequency of tail losses 
 
All statistical tests are based on the principle of first selecting a significance level, 
and then estimating the probability associated with the null hypothesis being true40. 
Typically, the null hypothesis is accepted if the estimated value of this probability, 
the estimated p-value, exceeds the chosen significance level, and rejected otherwise. 
The higher the significance level, the more likely it is to accept the null hypothesis, 
and the less likely is to incorrectly reject a true model (i.e., to make a Type I error). 
However, it also means that it is more likely to incorrectly accept a false model (i.e., 
to make a Type II error). Any statistical test therefore involves a trade-off between 
these two types of possible errors. 
 
In principle, a significance level should be selected to take account of the likelihoods 
of these errors (and, in theory, their costs as well) and strike an appropriate balance 
between them. However, it is very common to select some arbitrary significance level 
such as 5% or 10% and apply that level in all the tests. A significance level of this 
magnitude gives the model a certain benefit of the doubt, and implies that the model will 
be rejected only if the evidence against it is reasonably strong: for example, if the 
selected significance level is 10%, the model is adequate if the obtained p-value 
estimate is greater than 10%. A test can be said to be reliable if it is likely to avoid 
both types of error when used with an appropriate significance level. 
 
 
 
 

                                                 
40 The problem of hypothesis testing can be stated as follows. Assuming a random variable X 
with a known probability density function f(x;θ), where θ is the parameter of the distribution. 
Having obtained a random sample of size n, the point estimator θ̂  is obtained. Since the true 
θ is not known, a question arises whether the estimator θ̂  is the true representation of θ, for 
instance θ = θ*, where θ* is a specific numerical value of θ. The task is to test whether the the 
random sample comes from probability density function f(x;θ) = θ*. In statistics, θ = θ* is 
called the null (maintained) hypothesis and is generally denoted by H0. The null hypothesis is 
tested against an alternative hypothesis denoted by H1, which can simply be θ ≠ θ*. To test 
the validity of null hypothesis the sample information is used to obtain the test statistic. Very 
often the test statistic is the point estimator of the unknown parameter. The next step is to 
find the probability distribution of the test statistic and use the confidence interval or test of 
significance approach to test the null hypothesis (Gujarati, 2003, p. 905). In the language of 
hypothesis testing the established confidence interval is called the acceptance region and the 
area outside the acceptance region is called critical region, or region of rejection of the null 
hypothesis. The lower and upper limits of the acceptance region (which demarcate it from 
rejection regions) are called the critical values. When deciding to reject or not to reject the 
null hypothesis any researcher is likely to commit two types of errors (Gujarati, 2003, p. 907-
908):  

1) rejecting the null hypothesis when it is in fact correct – type I error, or 
2) accepting the null hypothesis when it is in fact false – type II error. 
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5.2.1 Frequency of tail losses test – Kupiec test 
 
Perhaps the most widely used test is the basic frequency of tail losses test (Kupiec, 
1995). Kupiec proposed a test based on the proportion of failures. The setup for this 
test is the classic framework for a sequence of successes and failures, also known as 
Bernoulli trials. The number of exceptions (x) follows a binomial probability 
distribution (Jorion, 2001, p. 133): 
 

xTx clcl
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T - sample size 
cl - confidence level 
 
The expected value of x is E(x) = (1-cl)T and variance V(x) = cl(1-cl)T. For large 
values of T, by the central limit theorem, binominal distribution can be 
approximated by the normal distribution (Jorion, 2001, p. 133): 
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Kupiec (1995) developed approximate 95% confidence regions for binominal test. 
These regions are defined by the tail points of the log-likelihood ratio (Crouhy, 
Galai, Mark, 2001, p. 248):  
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The LR test is uniformly most powerful for a given sample size and is 
asymptotically distributed as chi-square with one degree of freedom under the null 
hypothesis that (1-cl) is the true probability. Kupiec (1995) also proposes a second 
test that is based on the time that elapses before the first return greater than 

forecasted VaR is observed. Let X~  be a random variable that denotes the number of 
days until the first excess return is observed. The probability of observing the first 
excess return at time X is given by: 
 

1)1()
~

( −−== XclclXXP      (5.4) 
 

Given a realization X of X~ , the LR test for the null hypothesis that (1-cl) percent is 
(Crouhy, Galai, Mark, 2001, p. 248): 
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Under the null hypothesis, LR(X, 1-cl) is distributed as chi-square with one degree of 
freedom. This test is inferior to basic Kupiec test because it uses less information. 
The test only uses the information about the occurence of the previous excess return, 
and disregards everything else. It is best regarded as a diagnostic that can be used 
alongside more powerful tests. 
 
The Kupiec test has a simple intuition, is very easy to apply and does not require a 
great deal of information. However, it also has some drawbacks (Dowd, 2002, p. 
182): 

• The Kupiec test is not reliable except with very large sample sizes. Frequency-
of-tail-loss tests have even more difficulty as the holding period rises. For a 
longer holding period than a day, the test can be applied in one of two ways: 
by straightforward temporal aggregation (working with returns and VaR over 
a period of h days), and by using rolling h-day windows with 1-day steps 
(Tilman, Brusilovskiy, 2001, p. 85-86). Unfortunately, the first approach cuts 
down the sample size by a factor of h, and the second is difficult to 
implement. When backtesting, it is probably best to work with data of daily 
frequency, or more than daily frequency, if that is feasible. 

• Since it focuses exclusively on the frequency of tail losses, the Kupiec test 
throws away potentially valuable information about the sizes of tail losses. 
The Kupiec test also throws away useful information about the pattern of tail 
losses over time. If the model is correct, then not only should the observed 
frequency of tail losses be close to the frequency predicted by the model, but 
the sequence of observed indicator values that take the value 1 if the loss 
exceeds VaR and 0 otherwise should be independently and identically 
distributed. One way to test this prediction is suggested by Manganelli and 
Engle (2001, p. 9-12): if hitt is the value of the indicator in period t minus the 
VaR tail probability, 1 - cl, then hitt, should be uncorrelated with any other 
variables in the current information set. This prediction can be tested by 
specifying a set of variables in the current information set and regressing hitt, 
against them: if the prediction is satisfied, these variables should have jointly 
insignificant regression coefficients. 

 
 
5.2.2 Conditional backtesting test – Christoffersen test 
 
A useful adaptation to the Kupiec approach is the conditional backtesting approach 
suggested by Christoffersen (1998). Christoffersen developed a backtesting model 
that separates the particular hypotheses being tested, and then tests each hypothesis 
separately. For example, the full null hypothesis in a standard frequency of tail 
losses test is that the model generates a correct frequency of exceptions and, in 
addition, that exceptions are independent of each other. The second assumption is 
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usually subsidiary and made only to simplify the test. However, it raises the 
possibility that the model could fail the test, not because it generates the wrong 
frequency of failures, as such, but because failures are not independent of each 
other. The Christoffersen approach is designed to avoid this problem. To use it, the 
joint null hypothesis is divided into its constituent parts, thus giving two distinct 
sub-hypotheses: the sub-hypothesis that the model generates the correct frequency of 
tail losses, and the sub-hypothesis that tail losses are independent. If the appropriate 
assumptions for the alternative hypotheses are made, then each of these hypotheses 
has a likelihood ratio test. The sub-hypotheses can be tested separately, as well as 
the original joint hypothesis that the model has the correct frequency of 
independently distributed tail losses. For h = 1 step-ahead VaR predictions, 

),1(ˆ tλκ , and observed actual returns rt+1, the Boolean sequence indicating the 

presence or absence of VaR violations is defined as (Hartz, Mittnik, Paolella, 2006, 
p. 10): 
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For a correct VaR prediction model, the violation sequence It+1 is expected to be 
(Christoffersen, 1998, p. 5): 
 
H0: It+1 ~ IID(Bernoulli(λ)      (5.7) 
 
Testing this null hypothesis is twofold. One part is testing the unconditional 
coverage, or that the observed downfall probability is equal to the specified downfall 
probability (unconditional coverage). The second part tests whether the violations 

are IID. For the first part, the likelihood value under hypothesis that λλ =ˆ  is 
(Hartz, Mittnik, Paolella, 2006, p. 11): 
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while the observed likelihood is given by 10 ˆ)ˆ1()ˆ( TTL λλλ −= . Using the likelihood 
ratio test statistic and the corresponding, asymptotically valid p-value tests the 
unconditional coverage (Christoffersen, 1998, p. 6): 
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Puc is the probability of getting a sample that conforms even less to the null 
hypothesis than the sample. For Puc below the set significance level the null 
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hypothesis is rejected. The LRuc test is an unconditional test since it simply counts 
exceptions over the entire period. However, in the presence of time dependent 
heteroskedasticity, the conditional accuracy of interval forecasts is an important 
issue. Interval forecasts that ignore such variance dynamics may have correct 
unconditional coverage but, at any given time, will have incorrect conditional 
coverage. In such cases, the LRuc test is of limited use since it will classify 
inaccurate VaR estimates as acceptably accurate. For testing the independence of It+1 
as in Christoffersen (1998), let Λ be the transition probability matrix for a first order 
Markov sequence (Hartz, Mittnik, Paolella, 2006, p. 11): 
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where λij are the proportions given by λij = prop(It = i and It+1 = j), i,j = 0,1. With 
Tij, i,j = 0,1 the number of observations with a j following an i, the observed 
probabilities are given by (Christoffersen, 1998, p. 6): 
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and λ00 = 1 – λ01, λ10 = 1 – λ11. The likelihood value under the null (λ01 = λ11 = λ) is 

10 ˆ)ˆ1()ˆ( TTL λλλ −=  and the observed likelihood is given by (Hartz, Mittnik, 
Paolella, 2006, p. 11): 
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Likelihood ratio test statistic and corresponding p-value are (Hartz, Mittnik, 
Paolella, 2006, p. 11): 
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The LRind statistic is the likelihood ratio statistic for the null hypothesis of serial 
independence against the alternative of first-order Markov dependence.  
 
The LRcc test, adapted from the more general test proposed by Christoffersen (1998) 

is a test of correct conditional coverage. The test involves two hypotheses λλ =ˆ  
and It+1 ~ IID. The likelihood ratio test statistic with corresponding p-value is given 
by (Christoffersen, 1998 p. 9): 
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The finite sample critical values for the regulatory parameter values of (k,α) = (1,1) 
are shown in table 6. 
 
Table 6 - Critical values for LRuc and LRcc statistics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The finite-sample critical values for the LRuc and LRcc test statistics for the lower 1 
percent quantile (α= 1) are based on 10,000 simulations of sample size T = 250. The 
percentages in parentheses are the quantiles that correspond to the asymptotic critical values 
under the finite-sample distribution. 
 
The finite-sample critical values from table 6 are obtained by simulation and shows 
significant differences between the two distributions that must be accounted for 
when drawing statistical inference.  
 
As can be concluded from above discussion, Christoffersen approach helps to 
separate testable hypotheses about the dynamic structure of excess losses from 
testable hypotheses about the frequency of excess losses. This is potentially useful 
because it indicates not only whether models fail backtesting, but also helps to 
identify the reason why. 
 
 
5.3 Statistical backtests based on the size of tail losses 
 
Statistical backtests based on the frequency of tail losses focus exclusively on the 
frequency of tail losses, and effectively throw away information about the size of 
these losses. Size of tail losses is potentially very useful for assessing model 
adequacy, and tests using such information could be considered more reliable than 
tests that use only the information about the frequency of tail losses and in case of 
Christoffersen (1998) test the information about the independence of losses. 
Statistical backtests based on the size of tail losses seek to test if the values of tail 
losses are consistent with those forecasted by the tested VaR model.  
 

1% 5% 10%

6,635 3,842 2,706

5,497 5,025 3,555

(0,5%) (9,5%) (12,2%)

9,210 5,992 4,605

6,007 5,015 5,005

(0,2%) (1,1%) (11,8%)

Asymptotic χ2(2) 

Finite-sample

LRuc  Statistic

LR cc  Statistic

Significance level

Asymptotic χ2(1) 

Finite-sample
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A simple test of size of tail loss can be conducted by taking a sample of return 
observations and estimating VaR for a chosen confidence level. After that the sign 
of the returns is reversed to make loss observations positive the sample is truncated 
to eliminate all observations except those involving losses higher than calculated 
VaR (Dowd, 2002, p. 185). In this way the empirical distribution of tail-loss 
observations is obtained. The distributional assumptions on which the risk model is 
based is used to predict the distribution of tail loss observations, and test whether the 
two distributions are the same.  The significance of the difference between these two 
distributions can be tested by using a standard distribution-difference test (e.g., the 
Kolmogorov-Smirnov or Kuiper test). The main difference between the backtests 
based on the frequency of tail losses and backtests based on the size of tail losses is 
that the sizes of tail losses test take account of the size of losses exceeding VaR and 
the frequency of tail losses tests do not. The Kupiec (1995) test or Christoffersen 
(1998) test will not be able to tell the difference between a VaR model that generates 
tail losses compatible with the model, and a VaR model that generates tail losses 
incompatible with the model, provided that they have the right tail-loss frequencies. 
By contrast, size of tail losses tests do take account of the difference between the 
two models, and should be able to distinguish between them. The most well known 
backtest from this group of tests are the Crnkovic-Drachman backtest and a backtest 
based on Berkowitz transformations. 

 
5.3.1 Crnkovic-Drachman Backtest Procedure 
 
Crnkovic and Drachman (Crnkovic, Drachman, 1996) developed an approach that 
evaluates VaR models by testing the difference between the empirical return 
distribution and the predicted return distribution, across whole range of values. Their 
argument is that each return observation can be classified into a percentile of the 
forecast return distribution, and if the model is good, the return observations 
classified in this way should be uniformly distributed and independent of each other. 
This line of reasoning suggests two distinct tests (Dowd, 2002, p. 188). The first test 
is designed to test whether the classified observations are distributed as uniform 
U(0,1). This can be performed by testing whether the empirical distribution of 
classified observations matches the predicted distribution of classified observations. 
The second test in the Crnkovic-Drachman backtest procedure is a test of the 
independence of classified return observations. Crnkovic and Drachman suggest testing 
for independence with the BDS test suggested by Brock, Dechert and Scheinkman. The 
BDS test is powerful but quite involved and data-intensive, and perhaps a simpler test 
of independence like likelihood ratio test (Christoffersen, 1998) could be used.   
 
The first Crnkovic-Drachman test is a test of whether the predicted and realized 
return distributions are the same, and practically equal to the simple sizes of tail 
losses test applied to all observations rather than just tail losses. The main difference 
between the size of tail losses test and the first Crnkovic-Drachman test is the 
location of the threshold that separates return observations into tail observations and 
non-tail ones. Another difference lies in the choice of the distance test between the 
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predicted and empirical distributions. Kolmogorov-Smirnov statistic used in the size 
of tail losses test tends to be more sensitive around the median value of the 
distribution and less sensitive around the extremes. This means that the 
Kolmogorov-Smirnov statistic is less likely to detect differences between the tails of 
the distributions than differences between their central masses, and this can be a 
problem for VaR estimation, where the tails of the distribution are of interest. An 
alternative that avoids this latter problem is Kuiper's statistic, and it is for this reason 
that Crnkovic and Drachman prefer the Kuiper statistic to Kolmogorov-Smirnov. The 
Kuiper statistic is the sum of the maximum amount by which each distribution 
exceeds the other, and its critical values can be determined in same manner as with 
Kolmogorov-Smirnov statistic. However, Crnkovic and Drachman (1996, p. 140) 
report that the Kuiper's test statistic is very data-intensive: results begin to 
deteriorate with less than 1,000 observations, and are of little validity for less than 
500. Both these statistics assume that the parameters of the distributions are known, 
and if estimates are used instead of known true parameters, these test procedures 
cannot be relied upon and alternative tests should be used, such as Lillifors test41, or 
Monte Carlo methods. Both these tests are therefore open to objections, and how 
useful they might be in practice remains controversial. Crnkovic-Drachman test can be 
regarded as a special case of the sizes of tail losses test, and this special case occurs 
when the sizes of tail losses test is used with a very low threshold. Making the tail 
larger (by using the Crnkovic-Drachman test) gives more observations and hence 
greater precision (lower variance). On the other hand if the extreme observations are 
particularly distinctive for any reason, then including the central observations by using 
the Crnkovic-Drachman test can bias the results. This means that Crnkovic-Drachman 
test should only be used when the whole empirical distribution of returns is relevant to 
tail losses. In terms of variance-bias trade-off, this would be the case only if concerns 
about variance dominated concerns about bias. If the goal is to minimize variance 
and bias, the basic sizes of tail losses test is the preferred test (Dowd, 2002, p. 189).  
 
 
5.3.2 Test based on Berkowitz transformations 
  
There is also another, more useful, size-based approach to backtesting. Crnkovic, 
Drachman (1996) approach transforms the distribution of classified returns to IID 
U(0, 1) distributed. Instead of testing these predictions directly, Berkowitz (2001) 
suggests transforming classified observations to make them normal under the null 

                                                 
41 The Lilliefors test for goodness of fit to a normal distribution evaluates the hypothesis that 

variable X has a normal distribution with unspecified mean and variance, against the 
alternative that variable X does not have a normal distribution. This test compares the 
empirical distribution of X with a normal distribution having the same mean and variance 
as X. If the result of hypothesis test is H = 1 it means that the hypothesis that X has a 
normal distribution should be rejected, if H = 0 the hypothesis of normality should not be 
rejected at the p% significance level. Lilliefors test is similar to the Kolmogorov-Smirnov 
test, but is better suited for evaluating empirical data because it adjusts for the fact that the 
parameters of the normal distribution are estimated from variable X rather than specified in 
advance. 
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hypothesis. This is done by applying an inverse normal transformation to the uniform 
series42. When the data is transformed to follow normal distribution, a wider array of 
powerful statistical tools can be applied, than under uniform distribution. One possible 
use of such a procedure is to test the null hypothesis that zt is IID N(0,1) against a 
fairly general first-order autoregressive process with a possibly different mean and 
variance. Alternative process can be written as (Dowd, 2002, p. 190): 
 
zt  -  µ = ρ(zt-1 – µi) + εt      (5.15) 
 
The null hypothesis states that µ = 0, ρ = 0 and σ2, the variance of εt is equal to 1. The 
log-likelihood function associated with Equation 5.15 is (Berkowitz, 2001, p. 468): 
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The likelihood ratio test statistic for the null hypothesis is: 
 

[ ]ρσµ ˆ,ˆ,ˆ()0,1,0(2 2LLLR −−=        (5.17) 
 

where 2ˆ,ˆ σµ and ρ̂  are maximum likelihood estimates of the parameters. 

Likelihood ratio is distributed as 2
3χ , chi-squared with three degrees of freedom. 

The null hypothesis can be tested against this alternative hypothesis by obtaining 
maximum likelihood estimates of the parameters, deriving the value of the LR 

statistic, and comparing that value against the critical value for a 2
3χ . This is a 

powerful test because the alternative hypothesis is quite general and because, unlike 
the Crnkovic-Drachman test or sizes of tail losses test, this approach captures both 
aspects of the null hypothesis - uniformity/normality and independence, within a 
single test (Dowd, 2002, p. 191). Berkowitz approach can also be adapted to test 
whether the sizes of tail losses are consistent with expectations under the null 
hypothesis. The point here is that if the underlying data has fatter tails than the VaR 
model presumes, the transformed zt will also be leptokurtotic. This prediction can be 
tested by transforming tail loss data and noting that their likelihood function is a 
truncated normal log-likelihood function. The LR test is constructed in the same way 
as before. Estimated parameters are used as inputs into truncated log-likelihood 
function, whose values are than used in Equation 5.17, and compared to the resulting 

test value against the critical value that is distributed as 2
3χ  under the null 

hypothesis. 
                                                 
42 If xt is IID U(0,1), then zt = Ф-1(xt) is IID N(0,1). 
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5.4 Forecast evaluation approaches to backtesting 
 
The forecast evaluation approach was suggested by Lopez (1998, 1999) and is 
motivated by the evaluation methods often used to rank the forecasts of 
macroeconomic models. This approach allows for ranking of different competing 
models, but does not give any formal statistical indication of model adequacy. In 
ranking them, it also allows to take account of any particular concerns one might 
have. For example, higher losses can be given greater weight because of greater 
concern about higher losses. Furthermore, because they are not statistical tests, 
forecast evaluation approaches do not suffer from the low power of standard tests 
such as the Kupiec (1995) test. This makes forecast evaluation approach very 
attractive for backtesting with the small data sets typically available in practice. A 
forecast evaluation process has four key inputs, and a single output, a final score for 
each model. The first input is a set of paired observations of returns for each period 
and their associated VaR forecasts. The second input is a loss function that gives 
each observation a score depending on how the observed return compares to the 
VaR forecast for that period. Thus, if Lt is the loss made over period t, and VaRt is the 
forecast VaR for that period, the loss function Lt assigns the following value to the 
period t observation (Blanco, Ihle, 1998, p. 1): 
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where f(Lt, VaRt) ≥  g(Lt, VaRt) to ensure that tail losses do not receive a lower value 
than other return observations. The third input is a benchmark that serves to 
distinguish between good and bad VaR models. The fourth input is a score function, 
which takes as its inputs the loss function and benchmark values. If the benchmark 
equals the expected value of Ct, under the null hypothesis that the VaR model is 
good, a quadratic probability score (QPS) function can be used, suggested by Lopez 
(1999, p. 47): 
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The QPS function can take values in the range [0, 2], and the closer the QPS value is 
to zero, the better the model. QPS function can be used to rank VaR models, with 
the better models having lower scores. The QPS criterion also has the attractive 
property that it encourages honest reporting by the banks. If a bank wishes to 
minimise its QPS score, it will report its VaR figures sincerely (Lopez, 1999, p. 47-
48). This is a useful property in situations where a supervisor and the VaR modeller 
are different, and where the supervisor might be concerned about the VaR modeller 
reporting false VaR forecasts to alter the results of the backtest. Lopez also reports 
that the forecast evaluation approach distinguishes better between good and bad VaR 
models than the Kupiec test (Lopez, 1999, p. 51-60). 
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5.4.1 Size adjusted frequency of tail losses approach – Lopez test 
 
To implement forecast evaluation, it is necessary to specify the loss function, and a 
number of different loss functions have been proposed in the literature. The simplest 
loss function is the binomial loss function proposed by Lopez (1998), which gives 
an observation a value of 1 if it involves a tail loss, and a value of 0 otherwise. 
Equation 5.18 therefore takes the form (Lopez, 1998, p. 7): 
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This Lopez binomial loss function is intended for the users that are concerned only 
with the frequency of tail losses. The benchmark for this loss function is p, the 
expected value of E(Ct). This loss function actually only shows what can be seen 
from the Kupiec test. Ranking the VaR models by the Lopez binomial function and 
(preferring the models with the minimal score) is in all aspects completely the same 
as ranking the competing VaR models by the highest p value of the Kupiec test. In 
the same way, as all frequency of tail losses tests, it also ignores the magnitude of 
tail losses. In an attempt to remedy this defect Lopez (1998) himself suggests a 
second, size-adjusted, loss function (Lopez, 1998, p. 8): 
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This loss function allows for the sizes of tail losses to influence the final rating of 
VaR model. VaR model that generates higher tail losses would generate higher 
values under this size adjusted loss function than a VaR model that generates lower 
tail losses, ceteris paribus. However, with this loss function, there is no longer a 
straightforward condition for the benchmark, and the benchmark has to be estimated 
by some other means. One way to do so is suggested by Lopez (1998, p. 13). He 
suggests that under assumption that the observed returns are independent and 
identically distributed an empirical loss function and a value of the final score can be 
derived by repeating the operation a large number of times, and using the average 
final score as the estimate of the benchmark. However, if the VaR model is 
parametric, simpler and more direct approaches can be used to estimate the 
benchmark. For example, return data can be simulated under the null hypothesis 
using Monte Carlo methods, and the average of final scores can be taken as the 
benchmark.  
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5.4.2 Blanco-Ihle test 
 
The Lopez size adjusted loss function loses some of its intuition, because squared 
monetary returns have no practical real life interpretation. Accordingly, Blanco and 
Ihle (1998) suggest a different size-loss function (Blanco, Ihle, 1998, p. 1): 
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Blanco-Ihle loss function gives each tail-loss observation a weight equal to the tail 
loss divided by VaR. The loss function ensures that higher tail losses get awarded 
higher values without the impaired intuition introduced by squaring the tail loss. The 
benchmark for this forecast evaluation procedure is also easy to derive: the 
benchmark is the expected value of the difference between the tail loss and the VaR, 
divided by the VaR itself, and this is equal to the difference between the expected 
tail loss and the VaR, divided by the VaR. Blanco and Ihle (1998) also suggest a 
second approach that incorporates concerns about both the frequency and the size of 
tail losses. If Ct

frequency is the Lopez (1998) frequency loss function, given by 
Equation 5.20, and Ct

size is the Blanco-Ihle size (1998) loss function, given by 
Equation 5.22, they suggest an alternative loss function that is a weighted average of 
both, with the weighing factor reflecting relative concern about the two sources of 
loss. Blanco-Ihle (1998) is an excellent test for comparing competing VaR models 
that report the same frequency of tail losses, and whose tail losses are IID. Ranking 
VaR models by Blanco-Ihle approach is one of the best approaches to distinguish 
between such VaR models. 
 
 
5.5 Comparison of backtesting models 
 
Comparison of competing VaR models can also be done by using standard statistical 
measures. VaR models’ risk measures can be compared either to the average results 
of all competing VaR models, or to those predicted by each individual model.  VaR 
models can also be ranked based on more formal tests, and this can be done in two 
ways. The first and the easiest way is to take a statistical backtest procedure and 
rank VaR models by means of their resulting p-values: the better the model, the 
higher the p-value. As already noted this is the same as ranking VaR models by the 
binomial Lopez test. This approach is easy to carry out, but it is also statistically not 
too reliable.  
 
A more sophisticated approach is suggested by Christoffersen, Hahn, Inoue (2001). 
Their approach not only allows for testing of the VaR models, but also allows pair 
wise comparisons of models in a rigorous fashion using an appropriate statistical 
framework. Comparing risk measures to the model-average measures, can give some 
feel for which models produce higher or more volatile risk estimates. By comparing 



Chapter 5 Backtesting market risk models    195 

 

the risk estimates of VaR models to predicted measures, the VaR models can be 
ranked by the closeness of their forecasts to predicted values. Some of the 
procedures are discussed in Hendricks (1996)43.  
 
For the purpose of comparing alternative VaR models Mean Absolute Percentage 
Error (MAPE) and Root Mean Squared Error (RMSE) measures are used. MAPE is 
a combined measure of both bias and bunching. The impact of bias in the 
measurement of tail events is clear. If the procedure for measuring tail events is 
biased so that in every 100-day period there are two observations of 1%-tail events 
MAPE equals 1. MAPE measure is similar to a standard deviation measure. If it 
were based on the difference between the observed number of tail events and the 
sample mean number of tail events it would be even closer to the standard deviation 
measure. Since the windows are overlapping, standard tests of statistical significance 
cannot be used. MAPE is calculated as follows. For each period of 100 consecutive 
days for which estimates are made, the absolute difference between the actual 
number of tail events and the expected number of tail events is calculated. If the 
indicator variable is both unbiased and independent, the number of tail events is 
supposed to equal VaR confidence level. The measure is set equal to the mean of 
these absolute differences. Denoting rtail as the number of extreme events observed 
in the time window h, which is as suggested by Boudoukh, Richardson and 
Whitelaw (1998) set at 100 days, (1-cl)h is the number of expected extreme events 
in the period h.  
 
The Mean Absolute Percentage Error (MAPE) constructed according to instructions 
given in Boudoukh, Richardson, Whitelaw (1998, p. 66) is: 
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Smaller deviations from the expected value indicate better VaR measure. 
 
Root Mean Squared Error (RMSE) measure examines the degree to which the VaR 
forecasts tend to vary around the realized returns for a given date. The root mean 
squared error (RMSE) for each VaR approach can be calculated by taking the square 
root of the mean (over all sample dates) of the squares of the daily biases (Balaban, 
Bayar, Faff, 2004, p. 11): 
 

                                                 
43 Hendricks (1996) uses nine alternative measures: mean relative bias, root mean-squared 

relative bias, percentage volatility of risk measures, fraction of outcomes covered, multiple 
needed to attain desired coverage, average tail loss to VaR, maximum tail loss to VaR, 
correlations between risk measure and returns and mean relative bias for scaled risk 
measures. 
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Each of these measures looks at a different aspect of model performance, and very 
often, different measures do not produce the same rankings of alternative VaR 
models. However, different measures can give a feel for the relative strengths and 
weaknesses of different VaR models, and in this way they allow for a more informed 
view of VaR model adequacy. 
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6 MEASURING MARKET RISK IN TRANSITION 
COUNTRIES 

 
 

Majority of the transition markets are all exposed to very similar processes of strong 
inflow of foreign direct and portfolio investments, and offer possibilities of huge 
profits for investors. These countries represent a very interesting opportunity for 
foreign and domestic banks, investment funds, insurance companies and other 
investors. Banks and investment funds when investing in these financial markets 
employ the same risk measurement models for measuring market risk and forming 
of provision as they do in the developed markets. This means that risk managers in 
banks operating in transition countries de facto presume similar or even equal 
characteristics and behaviour in these markets, as they would expect in developed 
markets. This is a dangerous assumption, which is not founded on empirical 
research. 
 
Using VaR models, which are created and suited for developed and liquid markets in 
developing markets, raises important questions: Do the VaR models developed and 
tested in developed and liquid financial markets apply to the volatile and shallow 
financial markets of transition countries? Do the commonly used VaR models 
adequately capture market risk of these markets or are they only giving a false sense 
of security? 
 
The errors in VaR estimation depend on how reasonable are the assumptions made 
when calculating VaR. Probably the most important assumption to be made in a 
VaR model is the choice of the theoretical distribution that describes the distribution 
of empirical data. The assumption about the theoretical distribution of returns, as 
well as other assumptions made when calculating VaR, can be judged by whether a 
VaR model provides the correct conditional and unconditional risk coverage. A VaR 
model achieves the correct unconditional coverage if the portfolio losses exceed the 
cl percent VaR, 1-cl percent of the time. Because the losses are expected to exceed 
cl percent VaR 1-cl percent of the time, a VaR model that satisfies the unconditional 
coverage is correct on average. Correct conditional coverage means that as the risk 
of a portfolio changes daily, so should the VaR estimate change, and provide the 
correct VaR figure daily, and not on average. Although it is probably unrealistic for 
a VaR model to provide the exact coverage for every time period, a good VaR 
model should at least go so far as to increase, when the risk of a portfolio appears to 
be increasing and vice versa. 
 
Employing VaR models in forming of bank’s provisions that are not suited to 
financial markets they are used on, can have serious consequences for any investor. 
This can result in significant losses in trading portfolio that could pass undetected by 
the employed risk measurement models, leaving the investors unprepared for such 
events. Banks could also be penalized by the regulators, via higher scaling factor 
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when forming their market risk provisions, due to the use of a faulty risk 
measurement model (Hendricks, Hirtle, 1997, p. 4). 
 
 
6.1 A summary of empirical research on VaR estimation and model 

comparison 
 
According to published research, VaR models based on moving average volatility 
models seem to perform the worst. Otherwise, there is no straightforward result, and 
it is impossible to establish a ranking among the models. The results are very 
sensitive to the type of loss functions used, the chosen probability level of VaR, the 
period being turbulent or normal etc. Some researchers also find a trade-off between 
model sophistication and uncertainty.  
 
Hendricks (1996) in his famous study tested twelve VaR models (variance-
covariance VaR based on equally weighted moving average approach with 50, 125, 
250, 500, and 1,250 days observation periods, variance-covariance VaR with 
varying exponentially weighted moving averages and historical simulation VaR with 
125, 250, 500, and 1,250 days observation periods). Hendricks (1996) finds that in 
almost all cases the approaches cover the risk that they are intended to cover. In 
addition, the twelve approaches tend to produce risk estimates that do not differ 
greatly in average size, although historical simulation approaches yield somewhat 
larger 99th percentile risk measures than the variance-covariance approaches. 
Despite the similarity in the average size of the risk estimates, his investigation 
reveals differences, some times substantial, among the various VaR approaches. In 
terms of variability over time, the VaR approaches using longer observation periods 
tend to produce less variable results than those using short observation periods or 
those using weighting schemes. Jackson, Maude, Perraudin (1998) conclude that 
simulation-based VaR models yield more accurate measures of tail probabilities than 
parametric VaR models. They find that parametric VaR analysis tracks the time-
series behaviour of volatility better and yield slightly superior volatility forecasts 
compared to non-parametric, simulation-based techniques (though the differences 
are generally not statistically significant). In their study the parametric VaR models 
that yield the best forecasts have relatively short window lengths and large 
weighting factors. But such models are very poor at fitting the tails of return 
distributions and capital requirements based on them tend to be too low. De Raaji, 
Raunig (1998) analyse six different VaR approaches. They test two methods based 
on the variance-covariance approach with equally and exponentially weighted 
moving averages, two methods based on historical simulation with different 
historical period lengths and two VaR model based on mixtures of normal 
distributions with equally and exponentially weighted moving averages. De Raaji 
and Raunig (1998) comparison of the various VaR models revealed that the resulting 
VaR forecasts differ extremely for identical portfolios. With linear portfolios, 
differences sometimes exceeded 200% when the methods are compared with the 
EWMA-based variance-covariance approach as the benchmark. Even average 
differences fell into the 25 to 59% range. The results are consistent with the 
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conjecture that methods that do not incorporate excess kurtosis tend to underestimate 
VaR at the 99% confidence interval. On the other hand, the same methods tend to 
overestimate VaR at the 95% confidence interval. 
 
Lehar, Scheicher, Schittenkopf (2002) find that more complex volatility models 
(GARCH and Stochastic volatility) are unable to improve on constant volatility 
models for VaR forecast, although they do for option pricing. Wong, Cheng, Wong 
(2002) conclude that GARCH models, often found superior in forecasting volatility, 
consistently fail the Basel backtest. Several papers investigate the issue of trade-off 
in model choice; for example Caporin (2003c) finds that the EWMA compared to 
GARCH-based VaR forecast provides the best efficiency at a lower level of 
complexity. Bams, Wielhouwer (2000) draw similar conclusions, although 
sophisticated tail modelling results in better VaR estimates but with more 
uncertainty. Supposing that data generating process is close to be integrated, the use 
of the more general GARCH model introduces estimation error, which might result 
in the superiority of EWMA. Guermat, Harris (2002) show that EWMA-based VaR 
forecasts are excessively volatile and unnecessarily high, when returns do not have 
conditionally normal distribution but fat tails. This is because EWMA puts too much 
weight on extremes. According to Brooks, Persand (2003), the relative performance 
of different models depends on the loss function used. However, GARCH models 
provide reasonably accurate VaR. Christoffersen, Hahn, Inoue (2001) show that 
different models (EWMA, GARCH, Implied Volatility) might be optimal for 
different probability levels.  
 
A study by Berkowitz, O'Brien (2002) examines the VaR models used by six leading 
US financial institutions. Their results indicate that these models are in some cases 
highly inaccurate: banks sometimes experienced high losses much larger than their 
models predicted, which suggests that these models are poor at dealing with fat tails 
and extreme events. Their results also indicate that banks' models have difficulty 
dealing with changes in volatility. In addition, a comparison of banks' models with a 
simple univariate parametric GARCH model indicates that the latter gives roughly 
comparable coverage of high losses, but also tends to produce lower VaR figures 
and is much better at dealing with volatility changes. These results suggest that the 
banks' structural models embody so many approximations and other implementation 
compromises that they lose any edge over much simpler models such as GARCH. 
Their findings could also be interpreted as a suggestion that banks would be better 
off ditching their structural risk models in favour of much simpler GARCH models. 
Similar findings are also reported by Lucas (2000) who finds that sophisticated risk 
models based on estimates of complete variance-covariance matrices fail to perform 
much better than simpler univariate VaR models that require only volatility 
estimates. 

 
Although there is an abundance of research papers dealing with VaR and market risk 
measurement and management all of the existing VaR models are developed and 
tested in mature, developed and liquid markets (e.g.: Harvey, Whaley, 1992, 
Boudoukh, Richardson, Whitelaw, 1998, Hull, White, 1998a,b, Brook, Clare, 
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Persand, 2000, Manganelli, Engle, 2001, Alexander, 2001 etc). Quantitative testing 
of VaR models in other, less developed or developing financial market is scarce (e.g. 
Parrondo, 1997, Hagerud, 1997, Santoso, 2000, Sinha, Chamu, 2000, Magnusson, 
Andonov, 2002, Fallon, Sabogal, 2004, Valentinyi-Endrész, 2004, Žiković, 2005b, 
2006a, 2006b, Žiković, Bezić, 2006).  
 
Parrondo (1997) analysed the performance of VaR measures in emerging markets. 
He concludes that emerging markets are characterised by high instability, which 
considerably decreases the efficiency of the usual statistical methods. In this type of 
markets, jumps or discontinuities characterize the temporal behaviour of 
macroeconomic factors, such as FX or interest rates, and these discontinuities are 
usually followed by periods of large volatilities which slowly relax back to normal 
levels. The presence of such discontinuities indicates that the rate of change of a 
factor of interest can be no longer modelled by normal random variables. 
Additionally, the existence of well differentiable periods of large volatility which 
slowly relax to low volatility shows that the rate of change cannot be considered as 
uncorrelated over time. Parrondo (1997) shows that ARCH type processes can play 
an important role in calculating VaR in emerging markets.  
 
VaR estimation and volatility forecasting in Nordic countries was analysed by 
Hagerud (1997b) and Magnusson, Andonov (2002).  Hagerud (1997b) investigated 
45 equity return series from Nordic stock exchanges in Helsinki, Stockholm, Oslo 
and Copenhagen. The study investigated whether asymmetric GARCH models 
might have been the data generating process of those series. Hagerud found that 
relatively few Nordic stocks show signs of asymmetric volatility clustering. Only 12 
out of 45 stocks exhibited a noticeable leverage effect. Magnusson and Andonov 
(2002) study some aspects of the influence of capital adequacy requirements (CAR) 
on financial stability in Iceland. They conclude that Icelandic market is characterised 
by relatively high volatility and relatively small diversification of the economy, 
suggesting that Icelandic banking sector should increase its capital coverage above 
the mandatory minimum during the upswing of the economy. They also find that 
tested approaches fail to provide universal methodology or hardly any guidance 
about the optimal size of the CAR.  
 
Santoso (2000) tries to identify the best approach to calculating market risk for 
Indonesian banks and to provide guidelines for banks’ management in the choice of 
the most appropriate internal model. He compares the results of the BIS standardised 
and internal model based on variance-covariance VaR model using the data obtained 
from Indonesian banks. Santoso (2000) finds that by using the normality 
assumption, VaR does not satisfy the backtesting requirement. Furthermore, his 
results vary depending on the probability level, used with the employed model.  
 
Sinha, Chamu (2000) compare the performance of three different methods of 
calculating VaR in the context of Mexican and Latin American securities. They 
examine weaknesses of these methods by using five different tests: test based on the 
time until first failure, test based on failure rate, test based on expected value, test 
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based on autocorrelation, and test based on (rolling) mean absolute percentage error. 
In their study BRW historical simulation performs better than the historical 
simulation method and they conclude that BRW VaR gives estimates as precise as 
the stochastic simulation method, but with lower analytical and computational 
resources. Furthermore, they find that historical simulation and RiskMetrics 
methodology can lead to serious errors in estimating VaR in the world of volatile 
markets. 
 
Soczo (2001) published an interesting paper in which he did not analyse the 
statistical validity of VaR models in transition economies but investigated the 
difference between Basel standardised approach and VaR model based approach in 
forming capital requirements for market risk. The average difference between the 
capital charges based on Internal and Standardised Method for the portfolio of 
Hungarian securities was 21.2%, which is nearly three times larger than the average 
standard capital requirement. It is clear that financial institutions will not use the 
Internal Method to calculate the capital charge because of its large extra charges and 
costs compared to the Standardised Method. Soczo (2001) concluded that the large 
difference between capital charges determined by the Internal and Standardised 
Model are derived from the fact that the young Hungarian market, is more volatile 
than developed markets. According to Jorion (2001) volatility of shares and bonds is 
significantly lower in the US market. In the Hungarian market the typical volatility 
of shares forming the test portfolios was between 2% and 5%, which is much larger 
than volatility in the US market. Soczo (2001) points out that these conditions 
should be considered by the Hungarian regulatory agencies so that Internal Models 
would become attractive for financial institutions. 
 
Fallon, Sabogal (2004) by using coefficient of variation as a relative risk measure 
failed to provide conclusive evidence that the historical simulation VaR is a reliable 
for measuring risk at high confidence level in the Colombian stock market. 
Although, they could not reject the null hypothesis in all the cases, their finding can 
be explained by the fact that they did not use enough historical monthly observations 
to make it statistically significant, which can distort the results obtained at certain 
confidence levels.  
 
Valentinyi-Endrész (2004) performed the analysis on daily log-returns of the 
Hungarian stock index (BUX) for the period 1995-2002. She compares VaR forecast 
of different unconditional and conditional models (MA, EWMA, AR-GARCH, AR-
GARCH with structural break dummies). The obtained results are very sensitive to 
the type of loss functions used, the chosen probability level of VaR, the period being 
turbulent or normal etc. When testing VaR forecasts in-sample Valentinyi-Endrész 
(2004) finds that the performance of various models depends on choice of 
confidence level. At 5% confidence level majority of the models provide adequate 
coverage. However, for 1% and 0.5% confidence level none of the tested models 
ensured VaR forecasts high enough to cover losses at those probabilities. When 
testing out-of-the-sample almost all the models fail according to the Christoffersen 
test, but at 5% none is rejected by the Kupiec test. At 99% confidence level only two 
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VaR models based on GARCH volatilities with structural breaks and the EWMA 
models are not rejected. Across various evaluation criterions simple moving average 
model with 500-day observation window seems to be the worst. VaR models with 
structural breaks and EWMA outperformed others in the sense that the number of 
hits stayed in a narrow band around the theoretical values.  
 
Žiković (2005b) developed a semiparametric VaR model that uses EWMA volatility 
forecasting and tested it on Croatian VIN and CROBEX index and Slovenian SBI 20 
index. All the tested stock indexes showed significant departure from normality, 
significant autocorrelation and presence of heteroskedasticity. The model performed 
far superiorly to historical simulation and BRW historical simulation but also failed 
to properly capture the dynamics of SBI 20 index at extreme confidence levels. 
Based on the performed tests on CROBEX and VIN index Žiković (2006b) 
concluded that historical simulation VaR models should not be used for high 
confidence level estimates (above 95%), especially VaR models based on shorter 
rolling windows. The obtained results show that although BRW VaR approach also 
has its flaws, especially when testing for temporal dependence in the tail events, it 
brings significant improvement to historical simulation with minimal additional 
computational effort.  
 
Žiković, Bezić (2006) investigate the stock indexes of the EU member candidate 
states. CROBEX (Croatia), SOFIX (Bulgaria), BBETINRM (Romania) and XU100 
(Turkey) index all show clear positive trend in a longer time period. With the 
exception of XU100 index all other analysed indexes exhibit asymmetry, 
leptokurtosis and based on performed tests of normality, it can be said with great 
certainty that these returns are not normally distributed. Employed tests show 
significant autocorrelation and ARCH effects in the squared returns of all the 
analysed indexes. These phenomena violate normality assumption, as well as the IID 
assumption that is a necessary requirement for the proper implementation of 
historical simulation. Results point to the conclusion that even though historical 
simulation provided correct unconditional coverage for tested indexes at most of the 
confidence levels, use of historical simulation (especially based on shorter 
observation periods) is not recommendable in these markets. 
 
Besides the study of Hungarian stock index (BUX) by Valentinyi-Endrész (2004) in 
the VaR literature there are no quantitative research papers dealing with empirical 
VaR model comparison or volatility forecasting in the financial markets of transition 
countries besides my own. 
 
 
6.2 Data and methodology 
 
Data used in the analyses of performance of VaR models are the daily log returns 
from analysed indexes of transition countries. The returns are collected from 
Bloomberg web site for the period 01.01.2000 - 31.12.2005. Because of different 
working days in analysed countries the data set ranges from minimum of 1414 
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observations for Slovakian SKSM index to maximum of 1554 observations for 
Latvian RIGSE index. To secure the same out-of-the-sample VaR backtesting period 
for all of the tested indexes, the out-of-the-sample data sets are formed by taking out 
500 of the latest observations from each index. The rest of the observations (ranging 
from 914 observations for SKSM index to 1054 observations for RIGSE index) are 
used as presample observations needed for VaR starting values and volatility model 
calibration. 
 
Regarding the volatility modelling, the data shows that GARCH representation will 
be necessary to adequately capture the dynamics of data generating processes of 
analysed stock indexes. The dynamics of the data generating processes are complex 
because changes in the efficiency44 of the market alter the long-run level and 
persistence of volatility. Furthermore, there is ample of empirical evidence on a 
positive relationship between trading volume and volatility. Thus, the rapid 
expansion of stock markets in transition countries might have contradictory impacts 
on volatility: supposing that some predictability (significant AR term) is present in 
the series, increasing efficiency tends to lower the level and persistence of volatility, 
but larger volume might push its level up. Volatility can be raised due to other 
reasons too, for example when news in the return series arrives more often and are 
of larger magnitude than usual (shift in the volatility of error term). The increasing 
integration of the local stock markets into international capital markets may only 
further amplify this effect.  
 
The appropriate log-likelihood objective function needed for estimation of GARCH 
model parameters is obtained via maximum likelihood estimation. The log-
likelihood objective is calculated in three steps: 

1) Given the vector of current parameter values and the observed series, the 
log-likelihood function infers the process innovations (residuals) by inverse 
filtering. This inference operation solves for the current innovation: 
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This rearranged Equation 4.44 serves as a whitening filter, transforming a 
correlated process into uncorrelated white noise process. 

2) The log-likelihood function then uses the inferred innovations to infer the 
corresponding conditional variances via recursive substitution into the 
model-dependent conditional variance equation. 

3) Finally, the function uses the inferred innovations and conditional variances 
to evaluate the appropriate log-likelihood objective function. 

 

                                                 
44 Efficiency is used in terms of speed of prices adjusting to new information ariving to the 
market. 
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Since conditional mean equation and conditional variance equation are recursive it is 
necessary to secure an adequate presample data set to initiate the inverse filtering.  
 
To determine the basic statistical characteristics of daily returns of tested stock 
indexes summary statistics are calculated and a series of normality test is performed. 
All of the tests are performed over the entire observation period for every analysed 
index. The simplest test of normality is to analyse the third and fourth moment 
around the mean of the empirical distribution. Third moment around the mean, 
asymmetry, in the case of normal distribution should be zero (Šošić, Serdar, 1997, p. 
71). Negative asymmetry means that the distribution is skewed to the left, which 
implies that there is a greater chance of experiencing negative returns, and vice 
versa. Fourth moment around the mean, kurtosis, in the case of normal distribution 
should be three (Šošić, Serdar, 1997, p. 76). Most of the statistical software 
packages modify the equation for kurtosis to equal zero for normal distribution, to 
ease the interpretation. Excess kurtosis higher than zero means that the distribution 
has fatter tails than normal distribution, meaning that more extreme events occur 
more frequently than it would be expected under normal distribution. More 
sophisticated tests for normality of distribution are Lilliefors test and Jarque-Bera 
test. 
 
The Lilliefors test for goodness of fit to a normal distribution evaluates the 
hypothesis that variable X has a normal distribution with unspecified mean and 
variance, against alternative that variable X does not have a normal distribution. This 
test compares the empirical distribution of X with a normal distribution having the 
same mean and variance as X. If the result of hypothesis test is H = 1 it means that 
the hypothesis that X has a normal distribution should be rejected, if H = 0 the 
hypothesis should not be rejected at the 5% significance level. Lilliefors test is 
similar to the Kolmogorov-Smirnov test, but is better suited for evaluating empirical 
data because it adjusts for the fact that the parameters of the normal distribution are 
estimated from variable X rather than specified in advance.  
 
The Jarque-Bera test for goodness-of-fit to a normal distribution evaluates the 
hypothesis that variable X has a normal distribution with unspecified mean and 
variance, against the alternative that variable X does not have a normal distribution. 
The test is based on the sample skewness and kurtosis of variable X. If the result of 
hypothesis test is H = 1 it means that the hypothesis that variable X has a normal 
distribution should be rejected, if H = 0 the hypothesis should not be rejected at the 
5% significance level. The Jarque-Bera test determines whether the sample 
skewness and kurtosis are unusually different than their expected values, as 
measured by a chi-square statistic (Gujarati, 2003, p.148).  
 
Jarque-Bera test of normality is calculated as (Gujarati, 2003, p.148): 
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n – number of observations in the sample 
S – skewness of the sample 
K – kurtosis of the sample 
 
Under the null hypothesis of normality, Jarque-Bera statistic is distributed as a chi-
square statistic with two degrees of freedom. 
 
Returns on financial assets themselves are usually not dependent (correlated), 
otherwise traders could forecast daily returns. Returns squared are usually 
dependent, this meaning that volatility can be forecasted, but not the direction of the 
change of a variable. Calculating sample autocorrelation (ACF) and sample partial 
correlation function (PACF) at 5% significance level tests the independence of the 
data. Wide established approaches to detecting volatility clustering, which is 
autoregression in the squared returns, are the Ljung-Box Q-statistic and Engle’s 
ARCH test. Ljung-Box Q-statistic is the lth autocorrelation of the T-squared returns, 
and calculates whether the size of the movement at time t has any useful information 
to predict the size of the movement at time t+l. Engle's hypothesis test for the 
presence of autoregressive conditional heteroskedasticity (ARCH) effects tests the 
null hypothesis that a time series of sample residuals consists of independently and 
identically distributed (IID) Gaussian disturbances, i.e., that no ARCH effects exist. 
Given sample residuals obtained from a curve fit (e.g., a regression model), Engle's 
ARCH test tests for the presence of Mth order ARCH effects by regressing the 
squared residuals on a constant and the lagged values of the previous M squared 
residuals. Under the null hypothesis, the asymptotic test statistic, T(R2), where T is 
the number of squared residuals included in the regression and R2 is the sample 
multiple correlation coefficient, which is asymptotically chi-square distributed with 
M degrees of freedom.  
 
The return data is tested for autocorrelation both in log returns as well as squared log 
returns. Autocorrelation in log returns is tested by ACF, PACF and mean adjusted 
Ljung-Box Q-statistic. Autocorrelation in squared log returns is tested by ACF, 
PACF, Ljung-Box Q-statistic and ARCH test. When autocorrelation is detected in 
the log returns the most parsimonious ARMA(p, q) model adequate to remove 
autocorrelation is fitted to the data. When autocorrelation is detected in the squared 
log returns the most parsimonious GARCH model is fitted to the ARMA filtered (if 
necessary) data to remove heteroskedasticity from the time series. 
 
The log return series r

t
=100*ln(P

t
/P

t-1
) is specified as an ARMA-GARCH process 

and is estimated by maximum likelihood estimation (MLE):  
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where ηt ~ IID N(0,1) 
 
After ARMA-GARCH filtering the obtained innovation series is scaled by GARCH 
conditional variance to obtain standardized innovations. If the employed ARMA-
GARCH model successfully captures the dynamics of the data generating process, 
standardised innovations should be independently and identically distributed. 
Presumption of IID in standardised innovations is tested by ACF, PACF and Ljung-
Box Q-statistic. If the tests do not discover autocorrelation in the standardized 
innovations employed ARMA can be considered adequate. Squared standardised 
innovations are tested for autocorrelation and ARCH effects through ACF, PACF, 
Ljung-Box Q-statistic and ARCH test. The most parsimonious GARCH model that 
passes the tests of autocorrelation and ARCH effects in the squared standardized 
innovations is chosen to describe the volatility dynamics of the return series. 
 
In the following analysis VaR models based on historical simulation are calculated 
as quantiles of empirical distribution with an equally weighted moving observations 
window. Normal variance-covariance VaR is calculated as equally weighted moving 
average with observation window length of 250 returns (approximately 1 year). 
RiskMetrics model is calculated as described in the RiskMetrics Technical 
document (1996), with lambda set at 0.94. Similarly, EWMA Monte Carlo Model 
uses the same lambda value of 0.94 to calculate the variance estimation. Normal 
Monte Carlo uses 250-day equally weighted moving observations window. Both 
Monte Carlo models are calculated based on 5.000 simulations. BRW VaR is 
calculated as described by Boudoukh, Richardson, Whitelaw (1998), with the same 
suggested decay factors of 0.97 and 0.99. GARCH-RiskMetrics is a parametric 
approach to VaR similar to RiskMetrics model but uses GARCH volatility 
forecasting instead of EWMA volatility forecasting. HHS model developed earlier 
by the author is calculated as described in chapter 4.3.6, uses the same GARCH 
volatility forecasting as GARCH-RiskMetrics model, with unbounded observation 
window length and its quantiles are calculated via order statistics. 
 
 
6.3 Characteristics of stock market indexes in transition countries 
 
In the following section, statistical characteristics of the stock indexes from 
transition countries are analysed. The return series are tested for normality and 
presence of autocorrelation and heteroskedasticity. The most parsimonious ARMA-
GARCH model is fitted to the return series to obtain independently and identically 
distributed standardised innovations. For transition economies such as those of 
European transition countries, a short history of market economy and active trading 
in the financial markets presents a significant problem in a serious and statistically 
significant analysis. Because of the short time series of returns of individual stocks 
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as well as their highly variable liquidity it is practical to analyse the stock indexes of 
these countries. 
 
 
6.3.1 Slovenia – SBI20 index 
 
Trading on the Ljubljana Stock Exchange (LSE) started in 1989. The SBI20 index 
was launched in 1989 with the initial value of 1000 points.  
 
The analysis of the SBI20 stock index is performed for the period 03.01.2000. – 
31.12.2005. In this observation period the obtained sample from SBI20 index 
consists of 1462 daily index value observations. The evolution of index values and 
its returns is displayed in Figures 21, 22 and 23.  
 
Figure 21 - Daily values of SBI20 index, period 03.01.2000 - 31.12.2005 (1462 

observations) 

 
Figure 22 - Daily log returns of SBI20 index, period 03.01.2000 - 31.12.2005 (1461 

observations) 
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Figure 23 - Histogram of daily log returns of SBI20 index, period 03.01.2000 - 
31.12.2005 (1461 observations) 
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From figures 21, 22 and 23 it is visible that there is significant volatility clustering 
and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. 
 
Basic descriptive statistics for SBI20 index in the period 03.1.2000 - 31.12.2005 are 
presented in table 7. 
 
Table 7 - Basic statistics for SBI20 index daily log returns, period 03.01.2000 - 

31.12.2005 (1461 observations) 
Mean 0.000644 
Median 0.0005 
Minimum -0.04767 
Maximum 0.083109 
Standard deviation 0.006888 
Skewness 1.1188 
Kurtosis 21.647 
 
Mean and median of daily returns significantly differ, which is in breach of 
normality assumption. Both mean and median differ from zero and show a 
significant positive trend. Skewness and excess kurtosis of the index are also 
significantly different from zero assumed under normality. In the observed period 
SBI20 index experienced extreme daily returns. The highest daily gain in the 
analysed period was 8,31%, while the highest daily loss amounted to – 4,77%. 
Asymmetry is significantly positive (1,1188) meaning that the distribution slopes to 
the right and positive returns are expected to occur more frequently than negative 
ones. Excess kurtosis of 21,647 indicates that the empirical probability distribution 
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of SBI20 index has significantly fatter tails than assumed under normal distribution. 
The high value of kurtosis for this index indicates to the investors investing on 
Slovenian stock exchange that they can expect high, both positive and negative 
returns on their investments. Combining the third and fourth moment of the SBI20 
index with the mean and standard deviation, it can be concluded that in the observed 
period, positive returns were more frequent than negative returns, and the magnitude 
of the positive returns was significantly higher than the magnitude of loses. These 
characteristics of SBI20 index resulted in a strong positive trend and continually 
increasing index values. To determine if the daily returns of SBI20 index are 
normally distributed, normality of empirical distribution is tested by Jarque-Bera test 
and Lilliefors test. Normality tests for the SBI20 index are presented in table 8. 
 
Table 8 - Normality tests for SBI20 index daily log returns, period 03.01.2000 - 

31.12.2005 (1461 observations) 
Jarque-Bera test 21,404 
(p value) 0 
Lilliefors test 0.077501 
(p value) 0 
 
Both normality tests show that the hypothesis of normality of returns for SBI20 
index, for the entire analysed period, should be rejected at 5% significance level. 
Probability values of distribution of returns being normal, according to both 
normality tests are zero, strongly indicating that there is no possibility that the 
returns on this index are normally distributed. The distribution of SBI20 index 
returns is leptokurtotic and not symmetrical i.e. it skews to the right, as can be seen 
from figures 23 and 24, as well as from table 9.  
 
Figure 24 - Probability plot for SBI20 index daily log returns, period 03.01.2000 - 

31.12.2005 (1461 observations) 
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Table 9 - Parameters of fitted Normal and Students' T distribution to SBI20 index 
daily log returns, period 03.01.2000 - 31.12.2005 (1461 observations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24 and table 9 show that the true empirical distribution of SBI20 index daily 
returns is far better approximated by a Student’s t distribution with 3,65 degrees of 
freedom, than it is by normal distribution. 
 
Since the assumption of IID returns underlies the logic behind most of the VaR 
models it is necessary to test whether returns of the analysed time series are indeed 
IID. First, the presence of autocorrelation in SBI20 daily log returns is tested by 
examining its sample autocorrelation and sample partial correlation function (Figure 
25), and calculating Ljung-Box Q-statistic for mean adjusted SBI20 returns (Table 
10).  
 
Figure 25 - Sample autocorrelation and sample partial correlation function of SBI20 

index daily log returns, period 03.01.2000 - 02.12.2003 (961 
observations) 
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Distribution:    Normal Distribution:    t location-scale

Log likelihood:  4780.57 Log likelihood:  4942.64

Mean:            0.00066644 Mean:            0.000637

Variance:        4.82E-05 Variance:        4.70E-05

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         0.00066644 0.0001892 mu         0.000637 0.00015

sigma      0.0069414 0.00013386 sigma       0.004607 0.000165

df           3.64915 0.400123

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     3.58E-08 1.05E-24 mu     2.25E-08 3.68E-10 9.67E-07

sigma  1.05E-24 1.79E-08 sigma  3.68E-10 2.71E-08 4.49E-05

df     9.67E-07 4.49E-05 0.160099
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Table 10 - Ljung-Box-Pierce Q-test for mean adjusted SBI20 index daily log returns, 
period 03.01.2000 - 02.12.2003 (961 observations) 

Period 
(days) 

H p-value Statistic Critical 
value 

5 1 0 102.7 11.07 
10 1 0 124.94 18.307 
15 1 0 145.81 24.996 
20 1 0 150.62 31.41 

 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic found the presence of autocorrelation in the SBI20 daily log returns 
meaning that the Slovenian stock market is not very efficient since the direction of 
the market can be predicted. To extract the autocorrelation from the data it will be 
necessary to use an ARMA (p, q) model. After the presence of autocorrelation in the 
daily log returns has been investigated it is necessary to test the squared log returns 
for presence of autocorrelation i.e. heteroskedasticity. Presence of heteroskedasticity 
in SBI20 returns is tested by examining its sample autocorrelation and sample partial 
correlation function of squared returns (Figure 26), calculating Ljung-Box Q-
statistic for mean adjusted squared SBI20 returns (Table 11) and ARCH test for 
mean adjusted SBI20 returns (Table 12). 
 
Figure 26 - Sample autocorrelation and sample partial correlation function of 

squared SBI20 index daily log returns, period 03.01.2000 - 02.12.2003 
(961 observations) 
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Table 11 - Ljung-Box-Pierce Q-test for mean adjusted squared SBI20 index daily 
log returns, period 03.01.2000 - 02.12.2003 (961 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 114.24 11.07 
10 1 0 119.16 18.307 
15 1 0 123.3 24.996 
20 1 0 129.19 31.41 

 
Table 12 - ARCH test for mean adjusted SBI20 index daily log returns, period 

03.01.2000 - 02.12.2003 (961 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 115.37 11.07 
10 1 0 117 18.307 
15 1 0 120.19 24.996 
20 1 0 121.36 31.41 

 
Sample autocorrelation and sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is 
significant autocorrelation and ARCH effects present in SBI20 daily log returns i.e. 
volatility tends to cluster together (periods of low volatility are followed by further 
periods of low volatility and vice versa), meaning that the returns on SBI20 index 
are not IID. The results are that much more indicative when considering that the 
hypothesis of IID was rejected for all the tested time lags (5, 10, 15 and 20 days). 
Since the employed tests discovered significant autocorrelation and 
heteroskedasticity in the SBI20 daily returns it is necessary to model the data in 
order to obtain independently and identically distributed returns. Because 
autocorrelation has been detected in both returns and squared returns, SBI20 index 
returns will be modelled as an ARMA-GARCH process, in order to deal with both 
types of dependence. Estimated ARMA-GARCH parameters for SBI20 index are 
given in table 13. 
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Table 13 - Estimated ARMA-GARCH parameters for SBI20 index daily log returns, 
period 03.01.2000 - 02.12.2003 (961 observations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All of the estimated parameters are statistically significant according to their t 
statistics. The obtained model is a normally distributed AR(2)-GARCH(1,1) model: 
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The conditional volatility model for SBI20 index is far from being integrated and 
places unusually little importance on past conditional volatility, but places a lot of 
weight on previous period’s residual. The plot of fitted AR-GARCH model 
innovations, conditional standard deviations and observed SBI20 index daily log 
returns are given in figure 27.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mean: 

Variance: 

C 5.14E-04 0.000171 3.0146

AR(1) 4.26E-01 0.034087 12.4995

AR(2) -1.41E-01 0.0302 -4.6581

K 6.69E-06 1.25E-06 5.3528

GARCH(1) 0.50069 0.049385 10.1385

ARCH(1) 0.39003 0.037382 10.4337

ARMA(2,0) 

GARCH(1,1)

  Conditional Probability Distribution: Gaussian

Parameter Value  

Standard 

error T statistic 
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Figure 27 - Plot of fitted AR-GARCH model innovations, conditional standard 
deviations and observed SBI20 index daily log returns, period 
03.01.2000 - 02.12.2003 

 
 
If the fitted AR-GARCH model is appropriate for describing the dynamics of 
underlying data generating process the standardised innovation from such AR-
GARCH model should be independently and identically distributed (Figure 28). The 
adequacy of fitted AR-GARCH model can be statistically tested in the same manner 
as returns and squared returns.  
 
Figure 28 - Standardised innovations from fitted AR-GARCH model for SBI20 

index daily log returns, period 03.01.2000 - 02.12.2003 

 
 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic of standardised innovation detect no presence of autocorrelation in the 
standardised innovations from fitted AR-GARCH model, meaning that the 
conditional mean model (AR(2)) successfully captured the autocorrelation present in 
SBI20 returns (Figure 29, Table 14).  
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Figure 29 - Sample autocorrelation and sample partial correlation function of 
standardized innovations from SBI20 index daily log returns, period 
03.01.2000 - 02.12.2003 
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Table 14 - Ljung-Box-Pierce Q-test for standardised innovations from SBI20 index 

daily log returns, period 03.01.2000 - 02.12.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.524 4.1783 11.07 
10 0 0.2764 12.1305 18.307 
15 0 0.1084 21.9763 24.996 
20 0 0.2309 24.2667 31.41 

 
Sample autocorrelation and sample partial correlation function, Ljung-Box Q-
statistic of squared standardised innovation and ARCH test of standardised 
innovations detect no presence of autocorrelation in the squared standardised 
innovations from fitted AR-GARCH model. This indicates that the conditional 
variance model (GARCH(1,1)) successfully captured the heteroskedasticity present 
in SBI20 returns (Figure 30, Tables 15, 16). 
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Figure 30 - Sample autocorrelation and sample partial correlation function of 
squared standardized innovations from SBI20 index daily log returns, 
period 03.01.2000 - 02.12.2003 
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Table 15 - Ljung-Box-Pierce Q-test for squared standardised innovations from 

SBI20 index daily log returns, period 03.01.2000 - 02.12.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.3754 5.3434 11.07 
10 0 0.439 10.0165 18.307 
15 0 0.4149 15.5158 24.996 
20 0 0.5279 18.9068 31.41 

 
Table 16 - ARCH test for standardised innovations from SBI20 index daily log 

returns, period 03.01.2000 - 02.12.2003 
Period 
(days) 

H p-value Statistic Critical 
value 

5 0 0.3354 5.7108 11.07 

10 0 0.406 10.4012 18.307 

15 0 0.4614 14.8614 24.996 

20 0 0.5486 18.5899 31.41 
 
Findings of the performed tests imply that the fitted AR(2)-GARCH(1,1) model 
adequately describes the dynamics of SBI20 index daily returns. 
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6.3.2 Hungary – BUX index 
 
Trading on the Budapest Stock Exchange (BSE) started in 1990. The BUX index 
was launched in 1991 with the initial value of 1000 points.  
 
The analysis of the BUX stock index is performed for the period 04.01.2000. – 
31.12.2005. In this observation period the obtained sample from BUX index consists 
of 1502 daily index value observations. The evolution of index values and returns is 
displayed in Figures 31, 32 and 33.  
 
Figure 231 - Daily values of BUX index, period 04.01.2000 - 31.12.2005 (1502 

observations) 

 
Figure 32 - Daily log returns of BUX index, period 04.01.2000 - 31.12.2005 (1501 

observations) 
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Figure 33 - Histogram of daily log returns of BUX index, period 04.01.2000 - 
31.12.2005 (1501 observations) 
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From figures 31, 32 and 33 it is visible that there is significant volatility clustering 
and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. Basic 
descriptive statistics for BUX index in the period 04.01.2000 - 31.12.2005 are 
presented in table 17. 
 
Table 17 - Basic statistics for BUX index daily log returns, period 04.01.2000 - 

31.12.2005 (1501 observations) 
Mean 0.000579 
Median 0.00051 
Minimum -0.06874 
Maximum 0.060043 
Standard deviation 0.013921 
Skewness -0.11694 
Kurtosis 4.6873 
 
Mean and median of daily returns are very similar and show a significant positive 
trend. Skewness and excess kurtosis are different from zero. In the observed period 
BUX index experienced extreme daily returns. The highest daily gain in the 
analysed period was 6%, while the highest daily loss amounted to – 6,87%. 
Asymmetry is slightly negative (-0,1169) meaning that the distribution slopes 
slightly to the left and negative returns are expected to occur slightly more 
frequently than positive. Excess kurtosis of 4,687 indicates that the empirical 
probability distribution of BUX index has fatter tails than assumed under normal 
distribution. Combining the third and fourth moment of the BUX index with the 
mean and standard deviation, it can be concluded that although in the entire 
observation period, negative returns were more frequent than positive returns, the 
magnitude of the positive returns was significantly higher than the magnitude of 
loses, resulting in a strong positive trend for BUX index. These characteristics of 
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BUX index resulted in a strong positive trend and continually increasing index 
values. To determine if the daily returns of BUX index are normally distributed, 
normality of empirical distribution is tested by Jarque-Bera test and Lilliefors test. 
Normality tests for the BUX index are presented in table 18. 
 
Table 18 - Normality tests for BUX index daily log returns, period 04.01.2000 - 

31.12.2005 (1501 observations) 
Jarque-Bera test 180.16 
(p value) 0 
Lilliefors test 0.031092 
(p value) 0 
 
Both normality tests show that the hypothesis of normality of returns for BUX 
index, for the entire analysed period, should be rejected at 5% significance level. 
Probability values of distribution of returns being normal, according to both 
normality tests are zero, strongly indicating that there is no possibility that the 
returns on this index are normally distributed. The distribution of BUX index returns 
is leptokurtotic and not symmetrical i.e. it skews to the left, as can be seen from 
figures 33 and 34, and from table 19.  
 
Figure 34 - Probability plot for BUX index daily log returns, period 04.01.2000 - 

31.12.2005. (1501 observations) 
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Table 19 - Parameters of fitted Normal and Students' T distribution to BUX index 
daily log returns, period 04.01.2000 - 31.12.2005. (1501 observations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34 and table 19 show that the true empirical distribution of BUX index daily 
returns is somewhat better approximated by a Student’s t distribution with 6,06 
degrees of freedom, than it is by normal distribution, although the difference in log-
likelihoods of two distributions is not large. 
 
Presence of autocorrelation in BUX daily log returns is tested by examining its 
sample autocorrelation and sample partial correlation function (Figure 35), and 
calculating Ljung-Box Q-statistic for mean adjusted BUX returns (Table 20).  
 
Figure 35 - Sample autocorrelation and sample partial correlation function of BUX 

index daily log returns, period 04.01.2000 - 12.01.2004 (1001 
observations) 
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Distribution:    Normal Distribution:    t location-scale

Log likelihood:  3968.66 Log likelihood:  4004.15

Mean:            0.000598 Mean:            0.000553

Variance:        0.000189 Variance:        0.000191

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         0.000598 0.00037 mu         0.000553 0.000344

sigma      0.013758 0.000262 sigma       0.011299 0.000364

df           6.06188 0.95123

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     1.37E-07 -1.14E-23 mu     1.18E-07 3.32E-09 1.01E-05

sigma  -1.14E-23 6.85E-08 sigma  3.32E-09 1.32E-07 0.000239

df     1.01E-05 0.000239 0.904839
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Table 20 - Ljung-Box-Pierce Q-test for mean adjusted BUX index daily log returns, 
period 04.01.2000 - 12.01.2004 (1001 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.05606 10.774 11.07 
10 0 0.095619 16.143 18.307 
15 0 0.068003 23.832 24.996 
20 0 0.11443 27.792 31.41 

 
As expected, sample autocorrelation, sample partial correlation function and Ljung-
Box Q-statistic found no evidence of autocorrelation in the BUX daily log returns. 
Since there is no autocorrelation in the BUX index returns there is no need to fit a 
conditional mean model to the data.  
 
Presence of heteroskedasticity in BUX returns is tested by examining its sample 
autocorrelation and sample partial correlation function of squared returns (Figure 
36), calculating Ljung-Box Q-statistic for mean adjusted squared BUX returns 
(Table 21) and ARCH test for mean adjusted BUX returns (Table 22). 
 
Figure 36 - Sample autocorrelation and sample partial correlation function of 

squared BUX index daily log returns, period 04.01.2000 - 12.01.2004 
(1001 observations) 
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Table 21 - Ljung-Box-Pierce Q-test for mean adjusted squared BUX index daily log 

returns, period 04.01.2000 - 12.01.2004 (1001 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 1.31E-10 54.997 11.07 
10 1 0 131.75 18.307 
15 1 0 142.91 24.996 
20 1 0 165.01 31.41 
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Table 22 - ARCH test for mean adjusted BUX index daily log returns, period 
04.01.2000 - 12.01.2004 (1001 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 6.91E-08 41.659 11.07 
10 1 3.23E-13 80.979 18.307 
15 1 4.67E-12 86.383 24.996 
20 1 1.94E-10 87.599 31.41 

 
Sample autocorrelation and sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is 
significant autocorrelation and ARCH effects present in BUX daily log returns, 
meaning that the returns on BUX index are not IID. The results are that much more 
indicative when considering that the hypothesis of IID was rejected for all the tested 
time lags (5, 10, 15 and 20 days).  
 
Since the employed tests discovered significant heteroskedasticity in the BUX daily 
returns it is necessary to model the data in order to obtain independently and 
identically distributed returns. Because autocorrelation has been detected only in 
squared returns, BUX index returns will be modelled as a simple GARCH process, 
without having to model the conditional mean. Estimated GARCH parameters for 
BUX index are given in table 23. 
 
Table 23 - Estimated GARCH parameters for BUX index daily log returns, period 

04.01.2000 - 12.01.2004 (1001 observations) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to their t statistics all of the estimated parameters are statistically 
significant, except the mean drift that is statistically insignificant and will be 
assumed to equal zero. The obtained model is a normally distributed GARCH(1,1) 
model: 
 

2
1

2
1

2 890679.00662153.00659.8 −− ++−= ttt E σεσ  

Mean: 

Variance: 

C 9.89E-05 0.000438 0.2259

K 8.59E-06 2.86E-06 3.0081

GARCH(1) 0.89067 0.022978 38.7618

ARCH(1) 0.066215 0.014394 4.6001

ARMA(0,0) 

GARCH(1,1)

  Conditional Probability Distribution: Gaussian

Parameter Value  

Standard 

error T statistic 
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The plot of fitted GARCH model innovations, conditional standard deviations and 
observed BUX index daily log returns are given in figure 37.  
 
Figure 37 - Plot of fitted ARMA-GARCH model innovations, conditional standard 

deviations and observed BUX index daily log returns, period 04.01.2000 
- 12.01.2004 

 
 
If the fitted GARCH model is appropriate for describing the dynamics of underlying 
data generating process the standardised innovation from such GARCH model 
should be independently and identically distributed (Figure 38). The adequacy of 
fitted GARCH model is tested in the same manner as returns and squared returns.  
 
Figure 38 - Standardised innovations from fitted ARMA-GARCH model for BUX 

index daily log returns, period 04.01.2000 - 12.01.2004 

 
 
Sample autocorrelation, sample partial correlation function, Ljung-Box Q-statistic of 
squared standardised innovation and ARCH test of standardised innovations detect 
no presence of autocorrelation in the squared standardised innovations from fitted 
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GARCH model. This indicates that the conditional variance model (GARCH(1,1)) 
successfully captured the heteroskedasticity present in BUX returns (Figure 39, 
Tables 24, 25). 
 
Figure 39 - Sample autocorrelation and sample partial correlation function of 

squared standardized innovations from BUX index daily log returns, 
period 04.01.2000 - 12.01.2004 
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Table 24 - Ljung-Box-Pierce Q-test for squared standardised innovations from BUX 

index daily log returns, period 04.01.2000 - 12.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.83429 2.106 11.07 
10 0 0.42206 10.212 18.307 
15 0 0.22556 18.744 24.996 
20 0 0.32226 22.342 31.41 

 
Table 25 - ARCH test for standardised innovations from BUX index daily log 

returns, period 04.01.2000 - 12.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.84798 2.0084 11.07 
10 0 0.43952 10.011 18.307 
15 0 0.22147 18.832 24.996 

20 0 0.37595 21.365 31.41 
 
Findings of the performed tests imply that the fitted GARCH(1,1) model adequately 
describes the dynamics of BUX index daily returns. 
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6.3.3 Poland – WIG20 index 
 
Trading on the Warsaw Stock Exchange (WSE) started in 1991. The WIG20 index 
was launched in 1991 with the initial value of 1000 points. 
 
The analysis of the WIG20 stock index is performed for the period 03.01.2000 – 
31.12.2005. In this observation period the obtained sample from WIG20 index 
consists of 1506 daily index value observations. The evolution of index values and 
returns is displayed in Figures 40, 41 and 42. 
 
Figure 40 - Daily values of WIG20 index, period 03.01.2000 - 31.12.2005 (1506 

observations) 
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Figure 41 - Daily log returns of WIG20 index, period 03.01.2000 - 31.12.2005 (1505 

observations) 
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Figure 42 - Histogram of daily log returns of WIG20 index, period 03.01.2000 - 
31.12.2005 (1505 observations) 
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From figures 40, 41 and 42 it is visible that there is significant volatility clustering 
and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. Basic 
descriptive statistics for WIG20 index in the period 03.01.2000 - 31.12.2005 are 
presented in table 26. 
 
Table 26 - Basic statistics for WIG20 index daily log returns, period 03.01.2000 - 

31.12.2005 (1505 observations) 
Mean 0.000239 
Median 0.00019 
Minimum -0.07706 
Maximum 0.062461 
Standard deviation 0.01561 
Skewness 0.069375 
Kurtosis 4.4498 
 
Mean and median of daily returns are similar and close to zero, which is the usual 
simplifying assumption in risk management. Excess kurtosis of WIG20 index is 
significantly different from zero, but skewness is very close to being zero, meaning 
that the empirical distribution of WIG20 index is almost perfectly symmetrical. 
These values are very similar to the values obtained for Hungarian BUX index. In 
the observed period WIG20 index experienced extreme daily returns, which are 
again very similar to the ones from BUX index. The highest daily gain in the 
analysed period was 6,25%, while the highest daily loss amounted to – 7,7%. 
Asymmetry is very close to zero so it can be assumed that expectance of occurrence 
of positive and negative returns is equal. Excess kurtosis of 4,45, which is almost 
equal to BUX index indicates that the empirical probability distribution of WIG20 
index has fatter tails than assumed under normal distribution.  
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By observing the graphical representation of evolution of WIG20 index daily values 
(Figure 40) and knowing the first four moments of WIG20 index, it can be 
concluded that in the long run WIG20 index did not experience a strong trend of any 
direction but after a drift that occurred during the observation period, returned to its 
starting values. The fact that the frequency of occurrence of positive and negative 
returns was the same, mean and median are close to zero and kurtosis of the index 
being higher than normal can explain the particular shape of WIG20 index values.   
 
To determine if the daily returns of WIG20 index are normally distributed, normality 
of empirical distribution is tested by Jarque-Bera test and Lilliefors test. Normality 
tests for the WIG20 index are presented in table 27. 
 
Table 27 - Normality tests for WIG20 index daily log returns, period 03.01.2000 - 

31.12.2005 (1505 observations) 
Jarque-Bera test 131.94 
(p value) 0 
Lilliefors test 0.053572 
(p value) 0 
 
Both normality tests show that the hypothesis of normality of returns for WIG20 
index, for the entire analysed period, should be rejected at 5% significance level. 
Probability values of distribution of returns being normal, according to both 
normality tests are zero, strongly indicating that there is no possibility that the 
returns on this index are normally distributed. The distribution of WIG20 index 
returns is leptokurtotic but symmetrical, as can be seen from figures 42 and 43, and 
from table 28.  
 
Figure 43 - Probability plot for WIG20 index daily log returns, period 03.01.2000 - 

31.12.2005 (1505 observations) 
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Table 28 - Parameters of fitted Normal and Students' T distribution to WIG20 index 
daily log returns, period 03.01.2000 - 31.12.2005 (1505 observations) 

 
Figure 43 and table 28 show that the true empirical distribution of WIG20 index 
daily returnsis somewhat better approximated by a Student’s t distribution with 5,31 
degrees of freedom, than it is by normal distribution, although the difference in log-
likelihoods of two distributions is not large. 
 
Presence of autocorrelation in WIG20 daily log returns is tested by examining its 
sample autocorrelation, sample partial correlation function (Figure 44) and 
calculating Ljung-Box Q-statistic for mean adjusted WIG20 returns (Table 29).  
 
Figure 44 - Sample autocorrelation and sample partial correlation function of 

WIG20 index daily log returns, period 03.01.2000 - 08.01.2004 (1005 
observations) 
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Distribution:    Normal Distribution:    t location-scale

Log likelihood:  3780.36 Log likelihood:  3812.35

Mean:            0.000101 Mean:            -0.00015

Variance:        2.53E-04 Variance:        2.62E-04

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         0.000101 0.000427 mu         -0.00015 0.000393

sigma      0.015919 0.000302 sigma       0.012781 0.000459

df           5.30544 0.842059

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     1.82E-07 -1.36E-24 mu     1.55E-07 8.30E-09 1.70E-05

sigma  -1.36E-24 9.13E-08 sigma  8.30E-09 2.11E-07 2.88E-04

df     1.70E-05 2.88E-04 0.709064
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Table 29 - Ljung-Box-Pierce Q-test for mean adjusted WIG20 index daily log 
returns, period 03.01.2000 - 08.01.2004 (1005 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.45948 4.6545 11.07 
10 0 0.29123 11.908 18.307 
15 0 0.17114 20.021 24.996 
20 0 0.26554 23.486 31.41 

 
As expected, sample autocorrelation, sample partial correlation function and Ljung-
Box Q-statistic found no evidence of autocorrelation in the WIG20 daily log returns. 
Since there is no autocorrelation in the WIG20 index returns there is no need to fit a 
conditional mean model to the data.  
 
Presence of heteroskedasticity in WIG20 returns is tested by examining its sample 
autocorrelation, sample partial correlation function of squared returns (Figure 45), 
calculating Ljung-Box Q-statistic for mean adjusted squared WIG20 returns (Table 
30) and ARCH test for mean adjusted WIG20 returns (Table 31). 
 
Figure 45 - Sample autocorrelation and sample partial correlation function of 

squared WIG20 index daily log returns, period 03.01.2000 - 08.01.2004 
(1005 observations) 
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Table 30 - Ljung-Box-Pierce Q-test for mean adjusted squared WIG20 index daily 

log returns, period 03.01.2000 - 08.01.2004 (1005 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 108.31 11.07 
10 1 0 151.55 18.307 
15 1 0 308.37 24.996 
20 1 0 395.1 31.41 
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Table 31 - ARCH test for mean adjusted WIG20 index daily log returns, period 
03.01.2000 - 08.01.2004 (1005 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 1.52E-14 73.982 11.07 
10 1 6.68E-14 84.455 18.307 
15 1 0 161.64 24.996 
20 1 0 177.78 31.41 

 
Sample autocorrelation and sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is 
significant autocorrelation and ARCH effects present in WIG20 daily log returns, 
meaning that the returns on WIG20 index are not IID. The results are that much 
more indicative when considering that the hypothesis of IID was rejected for all the 
tested time lags (5, 10, 15 and 20 days).  
 
Since the employed tests discovered significant heteroskedasticity in the WIG20 
daily returns it is necessary to model the data in order to obtain independently and 
identically distributed returns. Because autocorrelation has been detected only in 
squared returns, WIG20 index returns will be modelled as a simple GARCH 
process, without having to model the conditional mean. Estimated GARCH 
parameters for WIG20 index are given in table 32. 
 
Table 32 - Estimated GARCH parameters for WIG20 index daily log returns, period 

03.01.2000 - 08.01.2004 (1005 observations) 

 
According to their t statistics all of the estimated parameters are statistically 
significant, except the mean drift that is statistically insignificant and will be 
assumed to equal zero. The obtained model is a normally distributed GARCH(1,1) 
model: 
 

2
1

2
1

2 93292.0047987.0066.5 −− ++−= ttt E σεσ  

 

Mean: ARMA(0,0) 

Variance: GARCH(1,1)

  Conditional Probability Distribution: Gaussian

C 0.0001624 0.000532 0.305

K 5.60E-06 2.72E-06 2.0611

GARCH(1) 0.93292 0.018124 51.4755

ARCH(1) 0.047987 0.011846 4.0511

Parameter Value  
Standard 

error
T statistic 



Chapter 6 Measuring market risk in transition countries   231 

 

The plot of fitted GARCH model innovations, conditional standard deviations and 
observed WIG20 index daily log returns are given in figure 46.  
 
Figure 46 - Plot of fitted ARMA- GARCH model innovations, conditional standard 

deviations and observed WIG20 index daily log returns, period 
03.01.2000 - 08.01.2004 

 
 
If the fitted GARCH model is appropriate for describing the dynamics of underlying 
data generating process the standardised innovation from such GARCH model 
should be independently and identically distributed (Figure 47). The adequacy of 
fitted GARCH model is tested in the same manner as returns and squared returns.  
 
Figure 47 - Standardised innovations from fitted ARMA- GARCH model for 

WIG20 index daily log returns, period 03.01.2000 - 08.01.2004 

 
 
Sample autocorrelation, sample partial correlation function, Ljung-Box Q-statistic of 
squared standardised innovation and ARCH test of standardised innovations detect 
no presence of autocorrelation in the squared standardised innovations from fitted 
GARCH model. This indicates that the conditional variance model (GARCH(1,1)) 
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successfully captured the heteroskedasticity present in WIG20 returns (Figure 48, 
Tables 33, 34). 
 
Figure 48 - Sample autocorrelation and sample partial correlation function of 

squared standardized innovations from WIG20 index daily log returns, 
period 03.01.2000 - 08.01.2004 
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Table 33 - Ljung-Box-Pierce Q-test for squared standardised innovations from 

WIG20 index daily log returns, period 03.01.2000 - 08.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.37118 5.3809 11.07 
10 0 0.49832 9.3599 18.307 
15 0 0.37816 16.059 24.996 

20 0 0.417 20.666 31.41 
 
Table 34 - ARCH test for standardised innovations from WIG20 index daily log 

returns, period 03.01.2000 - 08.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.44246 4.7868 11.07 
10 0 0.62775 8.0112 18.307 
15 0 0.49155 14.452 24.996 

20 0 0.54474 18.649 31.41 
 
Findings of the performed tests imply that the fitted GARCH(1,1) model adequately 
describes the dynamics of WIG20 index daily returns. 
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6.3.4 Czech Republic – PX50 index 
 
Trading on the Prague Stock Exchange (PSE) started in 1993. The PX50 index was 
launched in 1994 with the initial value of 100 points. 
 
The analysis of the PX50 stock index is performed for the period 05.01.2000 – 
31.12.2005. In this observation period the obtained sample from PX50 index 
consists of 1503 daily index value observations. The evolution of index values and 
returns is displayed in Figures 49, 50 and 51. 
 
Figure 49 - Daily values of PX50 index, period 05.01.2000 - 31.12.2005 (1503 

observations) 
 

 
Figure 50 - Daily log returns of PX50 index, period 05.01.2000 - 31.12.2005 (1502 

observations) 
 

 
 
 



234   MARKET RISK IN TRANSITION COUNTRIES – VaR APPROACH 
 

 

Figure 51 - Histogram of daily log returns of PX50 index, period 05.01.2000 - 
31.12.2005 (1502 observations) 
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From figures 49, 50 and 51 it is visible that there is significant volatility clustering 
and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. Basic 
descriptive statistics for PX50 index in the period 05.01.2000 - 31.12.2005 are 
presented in table 35. 
 
Table 35 - Basic statistics for PX50 index daily log returns, period 05.01.2000 - 

31.12.2005 (1502 observations) 
Mean 0.00074 
Median 0.000961 
Minimum -0.06205 
Maximum 0.041785 
Standard deviation 0.012581 
Skewness -0.26716 
Kurtosis 4.3604 
 
Mean and median of daily returns differ significantly, which is in breach of 
normality assumption. Both mean and median differ significantly from zero and 
show a significant positive trend that is even stronger than detected in SBI20 and 
BUX index. Skewness and excess kurtosis are different from zero. In the observed 
period PX50 index experienced extreme daily returns. The highest daily gain in the 
analysed period was 4,18%, while the highest daily loss amounted to – 6,21%, 
which is again very similar to situation already encountered in BUX and WIG20 
index. Asymmetry is slightly negative (-0,267) meaning that the distribution slopes 
slightly to the left and negative returns are expected to occur more frequently than 
positive, similarly to BUX index, only more pronounced. Excess kurtosis of 4,36 
indicates that the empirical probability distribution of PX50 index has slightly fatter 
tails than assumed under normal distribution, a characteristic that is shared with 
BUX and WIG20 index.  
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Combining the third and fourth moment of the PX50 index with the mean and 
standard deviation, it can be concluded that although in the entire observation 
period, negative returns were more frequent than positive returns, the magnitude of 
the positive returns was significantly higher than the magnitude of loses, resulting in 
a strong positive trend for PX50 index. These characteristics of PX50 index, similar 
to BUX index, resulted in a strong positive trend and continually increasing index 
values. To determine if the daily returns of PX50 index are normally distributed, 
normality of empirical distribution is tested by Jarque-Bera test and Lilliefors test. 
Normality tests for the PX50 index are presented in table 36. 
 
Table 36 - Normality tests for PX50 index daily log returns, period 05.01.2000 - 

31.12.2005 (1502 observations) 
Jarque-Bera test 132.67 
(p value) 0 
Lilliefors test 0.040504 
(p value) 0 
 
Both normality tests show that the hypothesis of normality for PX50 index, for the 
entire analysed period, should be rejected at 5% significance level. Probability 
values of distribution of returns being normal, according to both normality tests are 
zero, strongly indicating that there is no possibility that the returns on this index are 
normally distributed. The distribution of PX50 index returns is leptokurtotic and not 
symmetrical i.e. it skews to the left, as can be seen from figures 51 and 52, and from 
table 37. Figure 52 and table 37 show that the true empirical distribution of PX50 
index daily returns is somewhat better approximated by a Student’s t distribution 
with 7,18 degrees of freedom, than it is by normal distribution, although the 
difference in log-likelihoods of two distributions is minimal. 
 
Figure 52 - Probability plot for PX50 index daily log returns, period 05.01.2000 - 

31.12.2005 (1502 observations) 
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Table 37 - Parameters of fitted Normal and Students' T distribution to PX50 index 
daily log returns, period 05.01.2000 - 31.12.2005 (1502 observations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Presence of autocorrelation in PX50 daily log returns is tested by examining its 
sample autocorrelation and sample partial correlation function (Figure 53), and 
calculating Ljung-Box Q-statistic for mean adjusted PX50 returns (Table 38).  
 
Figure 53 - Sample autocorrelation and sample partial correlation function of PX50 

index daily log returns, period 05.01.2000 - 08.01.2004 (1002 
observations) 
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Distribution:    Normal Distribution:    t location-scale

Log likelihood:  4077.72 Log likelihood:  4098.36

Mean:            0.000679 Mean:            0.000797

Variance:        1.63E-04 Variance:        1.64E-04

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         0.000679 0.000343 mu         0.000797 0.000326

sigma      0.01277 0.000243 sigma       0.010894 0.000364

df           7.18162 1.39813

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     1.18E-07 1.58E-24 mu     1.07E-07 -2.85E-09 -1.27E-05

sigma  1.58E-24 5.89E-08 sigma  -2.85E-09 1.32E-07 3.73E-04

df     -1.27E-05 3.73E-04 1.95477
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Table 38 - Ljung-Box-Pierce Q-test for mean adjusted PX50 index daily log returns, 
period 05.01.2000 - 08.01.2004 (1002 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.21194 7.119 11.07 
10 0 0.45371 9.8504 18.307 
15 0 0.34321 16.602 24.996 
20 0 0.3119 22.541 31.41 

 
As expected, sample autocorrelation, sample partial correlation function and Ljung-
Box Q-statistic found no evidence of autocorrelation in the PX50 daily log returns. 
Since there is no autocorrelation in the PX50 index returns there is no need to fit a 
conditional mean model to the data. Presence of heteroskedasticity in PX50 returns 
is tested by examining its sample autocorrelation and sample partial correlation 
function of squared returns (Figure 54), calculating Ljung-Box Q-statistic for mean 
adjusted squared PX50 returns (Table 39) and ARCH test for mean adjusted PX50 
returns (Table 40). 
 
Figure 54 - Sample autocorrelation and sample partial correlation function of 

squared PX50 index daily log returns, period 05.01.2000 - 08.01.2004 
(1002 observations) 
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Table 39 - Ljung-Box-Pierce Q-test for mean adjusted squared PX50 index daily log 

returns, period 05.01.2000 - 08.01.2004 (1002 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 128.49 11.07 
10 1 0 224.87 18.307 
15 1 0 286.84 24.996 
20 1 0 316.2 31.41 
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Table 40 - ARCH test for mean adjusted PX50 index daily log returns, period 
05.01.2000 - 08.01.2004 (1002 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 89.424 11.07 
10 1 0 110.38 18.307 
15 1 0 117.94 24.996 
20 1 3.33E-16 120.03 31.41 

 
Sample autocorrelation and sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is 
significant autocorrelation and ARCH effects present in PX50 daily log returns, 
meaning that the returns on PX50 index are not IID. The results are that much more 
indicative when considering that the hypothesis of IID was rejected for all the tested 
time lags (5, 10, 15 and 20 days).  
 
Since the employed tests discovered significant heteroskedasticity in the PX50 daily 
returns it is necessary to model the data in order to obtain independently and 
identically distributed returns. Because autocorrelation has been detected only in 
squared returns, PX50 index returns will be modelled as a simple GARCH process, 
without having to model the conditional mean. Estimated GARCH parameters for 
PX50 index are given in table 41. 
 
Table 41 - Estimated GARCH parameters for PX50 index daily log returns, period 

05.01.2000 - 08.01.2004 (1002 observations) 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to their t statistics all of the estimated parameters are statistically 
significant. The obtained model is a normally distributed GARCH(1,1) model: 
 

ttr ε+= 000755.0  

 
2

1
2

1
2 90381.0069603.00669.4 −− ++−= ttt E σεσ  

Mean: 

Variance: 

C 0.000755 0.000396 1.9084

K 4.69E-06 2.18E-06 2.1481

GARCH(1) 0.90381 0.026029 34.7227

ARCH(1) 0.069603 0.018137 3.8376

ARMA(0,0) 

GARCH(1,1)

  Conditional Probability Distribution: Gaussian

Parameter Value  

Standard 

error T statistic 
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The plot of fitted GARCH model innovations, conditional standard deviations and 
observed PX50 index daily log returns are given in figure 54.  
 
Figure 54 - Plot of fitted ARMA-GARCH model innovations, conditional standard 

deviations and observed PX50 index daily log returns, period 
05.01.2000 - 08.01.2004 

 
 
If the fitted GARCH model is appropriate for describing the dynamics of underlying 
data generating process the standardised innovation from such GARCH model 
should be independently and identically distributed (Figure 55). The adequacy of 
fitted GARCH model is tested in the same manner as returns and squared returns.  
 
Figure 55 - Standardised innovations from fitted ARMA-GARCH model for PX50 

index daily log returns, period 05.01.2000 - 08.01.2004 

 
 
Sample autocorrelation, sample partial correlation function, Ljung-Box Q-statistic of 
squared standardised innovation and ARCH test of standardised innovations detect 
no presence of autocorrelation in the squared standardised innovations from fitted 
GARCH model. This indicates that the conditional variance model (GARCH(1,1)) 
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successfully captured the heteroskedasticity present in PX50 returns (Figure 56, 
Tables 42, 43). 
 
Figure 56 - Sample autocorrelation and sample partial correlation function of 

squared standardized innovations from PX50 index daily log returns, 
period 05.01.2000 - 08.01.2004 
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Table 42 - Ljung-Box-Pierce Q-test for squared standardised innovations from PX50 

index daily log returns, period 05.01.2000 - 08.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.88062 1.765 11.07 
10 0 0.98444 2.8643 18.307 
15 0 0.99272 4.9282 24.996 

20 0 0.9991 5.8371 31.41 
 
Table 43 - ARCH test for standardised innovations from PX50 index daily log 

returns, period 05.01.2000 - 08.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.88664 1.7179 11.07 
10 0 0.97824 3.1282 18.307 
15 0 0.99045 5.1839 24.996 
20 0 0.99843 6.2966 31.41 

 
Findings of the performed tests imply that the fitted GARCH(1,1) model adequately 
describes the dynamics of PX50 index daily returns. 
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6.3.5 Slovakia – SKSM index 
 
Trading on the Bratislava Stock Exchange (BSSE) started in 1993. The SKSM index 
was launched in 1994 with the initial value of 100 points. 
 
The analysis of the SKSM stock index is performed for the period 07.01.2000 – 
31.12.2005. In this observation period the obtained sample from SKSM index 
consists of 1415 daily index value observations. The evolution of index values and 
returns is displayed in Figures 57, 58 and 59. 
 
Figure 57 - Daily values of SKSM index, period 07.01.2000 - 31.12.2005 (1415 

observations) 

 
 
Figure 58 - Daily log returns of SKSM index, period 07.01.2000 - 31.12.2005 (1414 

observations) 
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Figure 59 - Histogram of daily log returns of SKSM index, period 07.01.2000 - 
31.12.2005 (1414 observations) 
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From figures 57, 58 and 59 it is visible that there is significant volatility clustering 
and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. 
Basic descriptive statistics for SKSM index in the period 07.01.2000 - 31.12.2005 
are presented in table 44. 
 
Table 44 - Basic statistics for SKSM index daily log returns, period 07.01.2000 - 

31.12.2005 (1414 observations) 
Mean 0.001184 
Median 0.0003 
Minimum -0.08817 
Maximum 0.059591 
Standard deviation 0.013255 
Skewness -0.11384 
Kurtosis 7.4742 
 
Mean and median of daily returns differ significantly, which is in breach of 
normality assumption. Both mean and median differ significantly from zero. Mean 
shows a very positive trend that is much more pronounced than in SBI20, BUX and 
PX50 index. Skewness and excess kurtosis are different from zero. In the observed 
period SKSM index experienced extreme daily returns. The highest daily gain in the 
analysed period was 5,96%, while the highest daily loss amounted to – 8,82%, 
which is again very similar to situation already encountered in BUX, WIG20 and 
PX50 index. Asymmetry is slightly negative (-0,1138) and almost identical to BUX 
index, meaning that the distribution slopes slightly to the left and negative returns 
are expected to occur more frequently than positive. Excess kurtosis of 7,47 
indicates that the empirical probability distribution of SKSM index has significantly 
fatter tails than assumed under normal distribution. Excess kurtosis is much higher 
than detected in BUX, WIG20 and PX50 but still significantly lower than recorded 
in SBI20 index.  
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Combining the third and fourth moment of the SKSM index with its mean and 
standard deviation, it can be concluded that although in the entire observation 
period, negative returns were more frequent than positive returns, the magnitude of 
the positive returns was significantly higher than the magnitude of loses, resulting in 
a strong positive trend for SKSM index. These characteristics of SKSM index, 
similar to BUX and PX50 index, resulted in a strong positive trend and continually 
increasing index values. To determine if the daily returns of SKSM index are 
normally distributed, normality of empirical distribution is tested by Jarque-Bera test 
and Lilliefors test. Normality tests for the SKSM index are presented in table 45. 
 
Table 45 - Normality tests for SKSM index daily log returns, period 07.01.2000 - 

31.12.2005 (1414 observations) 
Jarque-Bera test 1,176.9 
(p value) 0 
Lilliefors test 0.094636 

(p value) 0 
 
Both normality tests show that the hypothesis of normality of returns for SKSM 
index, for the entire analysed period, should be rejected at 5% significance level. 
Probability values of distribution of returns being normal, according to both 
normality tests are zero, strongly indicating that there is no possibility that the 
returns on this index are normally distributed. The distribution of SKSM index 
returns is leptokurtotic and almost symmetrical i.e. it skews slightly to the left, as 
can be seen from figures 59 and 60, as well as from table 46. Figure 60 and table 46 
show that the true empirical distribution of SKSM index daily returns is far better 
approximated by a Student’s t distribution with 2,33 degrees of freedom, than it is 
by normal distribution. 
 

Figure 60 - Probability plot for SKSM index daily log returns, period 07.01.2000 - 
31.12.2005 (1414 observations) 
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Table 46 - Parameters of fitted Normal and Students' T distribution to SKSM index 
daily log returns, period 07.01.2000 - 31.12.2005 (1414 observations) 

 
 
Presence of autocorrelation in SKSM daily log returns is tested by examining its 
sample autocorrelation, sample partial correlation function (Figure 61) and 
calculating Ljung-Box Q-statistic for mean adjusted SKSM returns (Table 47).  
 
Figure 61 - Sample autocorrelation and sample partial correlation function of SKSM 

index daily log returns, period 07.01.2000 - 09.10.2003 (914 
observations) 
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Distribution:    Normal Distribution:    t location-scale

Log likelihood:  3764.92 Log likelihood:  3913.97

Mean:            0.001344 Mean:            0.000974

Variance:        1.81E-04 Variance:        4.03E-04

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         0.001344 0.000373 mu         0.000974 0.000262

sigma      0.013461 0.000264 sigma       0.007566 0.000334

df           2.33126 0.212427

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     1.39E-07 1.10E-23 mu     6.87E-08 8.19E-09 5.24E-06

sigma  1.10E-23 6.96E-08 sigma  8.19E-09 1.11E-07 5.12E-05

df     5.24E-06 5.12E-05 0.045125
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Table 47 - Ljung-Box-Pierce Q-test for mean adjusted SKSM index daily log 
returns, period 07.01.2000 - 09.10.2003 (914 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.07474 10.018 11.07 
10 1 0.007697 23.964 18.307 
15 1 0.023616 27.686 24.996 
20 1 0.012973 36.625 31.41 

 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic found the presence of autocorrelation in the SKSM daily log returns 
meaning that the Slovakian stock market is not very efficient since the direction of 
the market can be predicted. To extract the autocorrelation from the data it will be 
necessary to use an ARMA (p, q) model. 
 
After the presence of autocorrelation in the daily log returns has been investigated it 
is necessary to test the squared log returns for presence of autocorrelation i.e. 
heteroskedasticity. Presence of heteroskedasticity in SKSM returns is tested by 
examining its sample autocorrelation and sample partial correlation function of 
squared returns (Figure 62), calculating Ljung-Box Q-statistic for mean adjusted 
squared SKSM returns (Table 48) and ARCH test for mean adjusted SKSM returns 
(Table 49). 
 
Figure 62 - Sample autocorrelation and sample partial correlation function of 

squared SKSM index daily log returns, 07.01.2000 - 09.10.2003 (914 
observations) 
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Table 48 - Ljung-Box-Pierce Q-test for mean adjusted squared SKSM index daily 
log returns, period 07.01.2000 - 09.10.2003 (914 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 99.655 11.07 
10 1 0 116.37 18.307 
15 1 0 128.62 24.996 
20 1 0 131.99 31.41 

 
Table 49 - ARCH test for mean adjusted SKSM index daily log returns, period 

07.01.2000 - 09.10.2003 (914 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 3.66E-15 76.922 11.07 
10 1 6.95E-13 79.28 18.307 
15 1 3.19E-12 87.276 24.996 
20 1 9.36E-11 89.419 31.41 

 
Sample autocorrelation and sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is 
significant autocorrelation and ARCH effects present in SKSM daily log returns, 
meaning that the returns on SKSM index are not IID.  
 
Since the employed tests discovered significant autocorrelation and 
heteroskedasticity in the SKSM daily returns it is necessary to model the data in 
order to obtain independently and identically distributed returns. Because 
autocorrelation has been detected in both returns and squared returns, SKSM index 
returns will be modelled as an ARMA-GARCH process in order to deal with both 
types of dependence. Estimated ARMA-GARCH parameters for SKSM index are 
given in table 50. 
 
Table 50 - Estimated ARMA-GARCH parameters for SKSM index daily log returns, 

period 07.01.2000 - 09.10.2003 (914 observations) 
 
 
 
 
 
 
 
 
 
 
 
 

Mean: 

Variance: 

C 6.89E-04 0.000413 1.6675

MA(1) -5.75E-02 0.030394 -1.8232

K 1.27E-05 2.85E-06 4.4377

GARCH(1) 0.85016 0.025413 33.4541

ARCH(1) 0.07733 0.013561 5.7025

ARMA(0,1) 

GARCH(1,1)

  Conditional Probability Distribution: Gaussian

Parameter Value  

Standard 

error T statistic 
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All of the estimated parameters are statistically significant according to their t 
statistics. The obtained model is a normally distributed MA(1)-GARCH(1,1) model: 
 

tttr εε +−= −10575.0000689.0  

 
2

1
2

1
2 85016.007733.00527.1 −− ++−= ttt E σεσ  

 
Similarly to SBI20 index the conditional volatility model for SKSM index is also far 
from being integrated. The plot of fitted MA-GARCH model innovations, 
conditional standard deviations and observed SKSM index daily log returns are 
given in figure 63.  
 
Figure 63 - Plot of fitted MA-GARCH model innovations, conditional standard 

deviations and observed SKSM index daily log returns, period 
07.01.2000 - 09.10.2003 

 

 
 
If the fitted MA-GARCH model is appropriate for describing the dynamics of 
underlying data generating process the standardised innovation from such MA-
GARCH model should be independently and identically distributed (Figure 64). The 
adequacy of fitted MA-GARCH model can be statistically tested in the same manner 
as returns and squared returns.  
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Figure 64 - Standardised innovations from fitted MA-GARCH model for SKSM 
index daily log returns, period 07.01.2000 - 09.10.2003 

 
 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic of standardised innovation detect no presence of autocorrelation in the 
standardised innovations from fitted MA-GARCH model, meaning that the 
conditional mean model (MA(1)) successfully captured the autocorrelation present 
in SKSM returns (Figure 65, Table 51).  
 
Figure 65 - Sample autocorrelation and sample partial correlation function of 

standardized innovations from SKSM index daily log returns, period 
07.01.2000 - 09.10.2003 
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Table 51 - Ljung-Box-Pierce Q-test for standardised innovations from SKSM index 

daily log returns, period 07.01.2000 - 09.10.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.3267 5.795 11.07 

10 0 0.2251 12.9738 18.307 

15 0 0.3267 16.8706 24.996 

20 0 0.1401 26.8302 31.41 
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Sample autocorrelation and sample partial correlation function, Ljung-Box Q-
statistic of squared standardised innovation and ARCH test of standardised 
innovations detect no presence of autocorrelation in the squared standardised 
innovations from fitted MA-GARCH model. This indicates that the conditional 
variance model (GARCH(1,1)) successfully captured the heteroskedasticity present 
in SKSM returns (Figure 66, Tables 52, 53). 
 
Figure 66 - Sample autocorrelation and sample partial correlation function of 

squared standardized innovations from SKSM index daily log returns, 
period 07.01.2000 - 09.10.2003 
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Table 52 - Ljung-Box-Pierce Q-test for squared standardised innovations from 

SKSM index daily log returns, period 07.01.2000 - 09.10.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.64116 3.383 11.07 
10 0 0.77893 6.4188 18.307 
15 0 0.83564 9.7422 24.996 
20 0 0.94041 11.217 31.41 

 
Table 53 - ARCH test for standardised innovations from SKSM index daily log 

returns, period 07.01.2000 - 09.10.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.64372 3.3662 11.07 
10 0 0.76362 6.5887 18.307 
15 0 0.81669 10.048 24.996 

20 0 0.93267 11.485 31.41 
 
Findings of the performed tests imply that the fitted MA(1)-GARCH(1,1) model 
adequately describes the dynamics of SKSM index daily returns. 
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6.3.6 Croatia – CROBEX index 
 
Although a small country, up until 2007 Croatia had two stock exchanges, Zagreb 
Stock Exchange (ZSE) and Varaždin Stock Exchange (VSE). Although the Varaždin 
stock exchange does not exist anymore and all of the securities are now trading only 
on ZSE, VIN index is included in this analysis since it existed during the studied 
period. Trading on the Zagreb Stock Exchange (ZSE) started in 1991. The CROBEX 
index was launched on 1 September 1997 with the initial value of 1000 points. 
 
The analysis of the CROBEX stock index is performed for the period 04.01.2000 – 
31.12.2005. In this observation period the obtained sample from CROBEX index 
consists of 1435 daily index value observations. The evolution of index values and 
returns is displayed in Figures 67, 68 and 69. 
 
Figure 67 - Daily values of CROBEX index, period 04.01.2000 - 31.12.2005 (1435 

observations) 

 
Figure 68 - Daily log returns of CROBEX index, period 04.01.2000 - 31.12.2005 

(1434 observations) 
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Figure 69 - Histogram of daily log returns of CROBEX index, period 04.01.2000 - 
31.12.2005 (1434 observations) 
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From figures 67, 68 and 69 it is visible that there is significant volatility clustering 
and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. 
 
Basic descriptive statistics for CROBEX index in the period 04.01.2000 - 
31.12.2005 are presented in table 54. 
 
Table 54 - Basic statistics for CROBEX index daily log returns, period 04.01.2000 - 

31.12.2005 (1434 observations) 
Mean 0.000683 
Median 0.000164 
Minimum -0.09032 
Maximum 0.14979 
Standard deviation 0.014751 
Skewness 0.75377 
Kurtosis 18.369 
 
Mean and median of daily returns differ significantly, which is in breach of 
normality assumption. Both mean and median differ significantly from zero. Mean 
shows a very positive trend similar to SBI20, BUX and PX50 index. Skewness and 
excess kurtosis of the index are also significantly different from zero assumed under 
normality. In the observed period CROBEX index experienced extreme daily 
returns. The highest daily gain in the analysed period was a huge 14,98%, while the 
highest daily loss amounted to – 9,03%. Asymmetry is significantly positive (0,754), 
similar to SBI20 index, meaning that the distribution slopes to the right and positive 
returns are expected to occur more frequently than negative ones. Excess kurtosis of 
18,369 indicates that the empirical probability distribution of CROBEX index has 
significantly fatter tails than assumed under normal distribution. The value of excess 
kurtosis is close to the value found for SBI20 index, and much higher than the 
values for BUX, WIG20, PX50 and SKSM index. The high value of excess kurtosis 
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for this index indicates to the investors investing on ZSE that they can expect high, 
both positive and negative returns on their investments. Combining the third and 
fourth moment of the CROBEX index with the mean and standard deviation, it can 
be concluded that in the observed period, positive returns were more frequent than 
negative returns, and the magnitude of the positive returns was significantly higher 
than the magnitude of loses. These characteristics of CROBEX index, very similar 
to SBI20 index, resulted in a strong positive trend and continually increasing index 
values.  To determine if the daily returns of CROBEX index are normally 
distributed, normality of empirical distribution is tested by Jarque-Bera test and 
Lilliefors test. Normality tests for the CROBEX index are presented in table 55. 
 

Table 55 - Normality tests for CROBEX index daily log returns, period 04.01.2000 - 
31.12.2005 (1434 observations) 

Jarque-Bera test 14,202 
(p value) 0 
Lilliefors test 0.10855 

(p value) 0 
 

Both normality tests show that the hypothesis of normality of returns for CROBEX 
index, for the entire analysed period, should be rejected at 5% significance level. 
Probability values of distribution of returns being normal, according to both 
normality tests are zero, strongly indicating that there is no possibility that the 
returns on this index are normally distributed. The distribution of CROBEX index 
returns is leptokurtotic and not symmetrical i.e. it skews to the right, as can be seen 
from figures 69 and 70, and from table 56. Figure 70 and table 56 show that the true 
empirical distribution of CROBEX index daily returns is much better approximated 
by a Student’s t distribution with 2,75 degrees of freedom, than it is by a normal. 
 

Figure 70 - Probability plot for CROBEX index daily log returns, period 04.01.2000 
- 31.12.2005. (1434 observations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.05 0 0.05 0.1

0.01  
0.05  
0.1   
0.25  
0.5   
0.75  
0.9   
0.95  
0.99  

Data

Probability

CROBEX returns

CROBEX student T

CROBEX normal



Chapter 6 Measuring market risk in transition countries   253 

 

Table 56 - Parameters of fitted Normal and Students' T distribution to CROBEX 
index daily log returns, period 04.01.2000 - 31.12.2005. (1434 
observations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Presence of autocorrelation in CROBEX daily log returns is tested by examining its 
sample autocorrelation and sample partial correlation function (Figure 71) and 
calculating Ljung-Box Q-statistic for mean adjusted CROBEX returns (Table 57).  
 
Figure 71 - Sample autocorrelation and sample partial correlation function of 

CROBEX index daily log returns, period 04.01.2000 - 21.10.2003 (934 
observations) 
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Distribution:    Normal Distribution:    t location-scale

Log likelihood:  3850.32 Log likelihood:  4049.3

Mean:            0.000637 Mean:            0.000466

Variance:        0.000195 Variance:        0.000245

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         0.000637 0.00038 mu         0.000466 0.000275

sigma      0.013973 0.000269 sigma       0.008173 0.000302

df           2.7481 0.241739

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     1.45E-07 2.13E-24 mu     7.55E-08 -2.11E-10 -1.75E-07

sigma  2.13E-24 7.24E-08 sigma  -2.11E-10 9.13E-08 4.78E-05

df     -1.75E-07 4.78E-05 0.058438
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Table 57 - Ljung-Box-Pierce Q-test for mean adjusted CROBEX index daily log 
returns, period 04.01.2000 - 21.10.2003 (934 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.38439 5.2651 11.07 
10 0 0.758 6.6503 18.307 
15 0 0.70777 11.617 24.996 
20 0 0.69091 16.41 31.41 

 
As expected, sample autocorrelation and sample partial correlation function and 
Ljung-Box Q-statistic found no evidence of autocorrelation in the CROBEX daily 
log returns. Since there is no autocorrelation in the CROBEX index returns there is 
no need to fit a conditional mean model to the data. Presence of heteroskedasticity in 
CROBEX returns is tested by examining its sample autocorrelation, sample partial 
correlation function of squared returns (Figure 72), calculating Ljung-Box Q-
statistic for mean adjusted squared CROBEX returns (Table 58) and ARCH test for 
mean adjusted CROBEX returns (Table 59). 
 
Figure 72 - Sample autocorrelation and sample partial correlation function of 

squared CROBEX index daily log returns, period 04.01.2000 - 
21.10.2003 (934 observations) 
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Table 58 - Ljung-Box-Pierce Q-test for mean adjusted squared CROBEX index 

daily log returns, period 04.01.2000 - 21.10.2003 (934 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 239.83 11.07 
10 1 0 241.44 18.307 
15 1 0 243.25 24.996 
20 1 0 245.21 31.41 
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Table 59 - ARCH test for mean adjusted CROBEX index daily log returns, period 
04.01.2000 - 21.10.2003 (934 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 168.9 11.07 
10 1 0 171.58 18.307 
15 1 0 173.86 24.996 
20 1 0 174.16 31.41 

 
Sample autocorrelation, sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is 
significant autocorrelation and ARCH effects present in CROBEX daily log returns, 
meaning that the returns on CROBEX index are not IID. The results are that much 
more indicative when considering that the hypothesis of IID was rejected for all the 
tested time lags (5, 10, 15 and 20 days).  
 
Since the employed tests discovered significant heteroskedasticity in the CROBEX 
daily returns it is necessary to model the data in order to obtain independently and 
identically distributed returns. Because autocorrelation has been detected only in 
squared returns, CROBEX index returns will be modelled as a simple GARCH 
process, without having to model the conditional mean. Estimated GARCH 
parameters for CROBEX index are given in table 60. 
 
Table 60 - Estimated GARCH parameters for CROBEX index daily log returns, 

period 04.01.2000 - 21.10.2003 (934 observations) 
 
 
 
 
 
 
 
 
 
 
 
 
 

According to their t statistics all of the estimated parameters are statistically 
significant, except the mean drift that is statistically insignificant and will be 
assumed to equal zero. The obtained model is a normally distributed GARCH(1,1) 
model: 
 

ttr ε=  
 

2
1

2
1

2 8323.011082.00506.1 −− ++−= ttt E σεσ  

Mean: 

Variance: 

C 4.25E-04 0.000389 1.0917

K 1.06E-05 3.96E-06 2.664

GARCH(1) 0.8323 0.033011 25.2126

ARCH(1) 0.11082 0.024 4.6175

ARMA(0,0) 

GARCH(1,1)

  Conditional Probability Distribution: Gaussian

Parameter Value  

Standard 

error T statistic 
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The plot of fitted GARCH model innovations, conditional standard deviations and 
observed CROBEX index daily log returns are given in figure 73.  
 
Figure 73 - Plot of fitted GARCH model innovations, conditional standard 

deviations and observed CROBEX index daily log returns, period 
04.01.2000 - 21.10.2003 

 
 
If the fitted GARCH model is appropriate for describing the dynamics of underlying 
data generating process the standardised innovation from such GARCH model 
should be independently and identically distributed (Figure 74). The adequacy of 
fitted GARCH model is tested in the same manner as returns and squared returns.  
 
Figure 74 - Standardised innovations from fitted GARCH model for CROBEX 

index daily log returns, period 04.01.2000 - 21.10.2003 

 
 
Sample autocorrelation, sample partial correlation function, Ljung-Box Q-statistic of 
squared standardised innovation and ARCH test of standardised innovations detect 
no presence of autocorrelation in the squared standardised innovations from fitted 
GARCH model. This indicates that the conditional variance model (GARCH(1,1)) 
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successfully captured the heteroskedasticity present in CROBEX returns (Figure 75, 
Tables 61, 62). 
 
Figure 75 - Sample autocorrelation and sample partial correlation function of 

squared standardized innovations from CROBEX index daily log 
returns, period 04.01.2000 - 21.10.2003 
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Table 61 - Ljung-Box-Pierce Q-test for squared standardised innovations from 

CROBEX index daily log returns, period 04.01.2000 - 21.10.2003 
Period 
(days) 

H p-value Statistic Critical 
value 

5 0 0.98968 0.56199 11.07 

10 0 0.9911 2.4841 18.307 

15 0 0.99916 3.3801 24.996 

20 0 0.99996 3.8649 31.41 
 
Table 62 - ARCH test for standardised innovations from CROBEX index daily log 

returns, period 04.01.2000 - 21.10.2003 
Period 
(days) 

H p-value Statistic Critical 
value 

5 0 0.99116 0.52561 11.07 

10 0 0.9914 2.463 18.307 

15 0 0.99918 3.3709 24.996 

20 0 0.99997 3.7849 31.41 
 
Findings of the performed tests imply that the fitted GARCH(1,1) model adequately 
describes the dynamics of CROBEX index daily returns. 
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6.3.7 Croatia – VIN index 
 
Trading on the Varaždin Stock Exchange (VSE) started in 1993. The VIN index was 
launched on 1 January 1997 with the initial value of 1000 points. From 2007 
Varaždin stock exchange does not exist anymore and all of the securities are now 
trading only on ZSE. VIN index is included in our analysis since it existed during 
the studied period. 
 
The analysis of the VIN stock index is performed for the period 04.01.2000 – 
31.12.2005. In this observation period the obtained sample from VIN index consists 
of 1481 daily index value observations. The evolution of index values and returns is 
displayed in Figures 76, 77 and 78. 
 
Figure 76 - Daily values of VIN index, period 04.01.2000 - 31.12.2005 (1481 

observations) 
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Figure 77 - Daily log returns of VIN index, period 04.01.2000 - 31.12.2005 (1480 

observations) 
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Figure 78 - Histogram of daily log returns of VIN index, period 04.01.2000 - 
31.12.2005 (1480 observations) 
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From figures 76, 77 and 78 it is visible that there is significant volatility clustering 
and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. 
 
Basic descriptive statistics for VIN index in the period 04.01.2000 - 31.12.2005 are 
presented in table 63. 
 
Table 63 - Basic statistics for VIN index daily log returns, period 04.01.2000 - 

31.12.2005 (1480 observations) 
Mean 0.001286 
Median 0.000534 
Minimum -0.1567 
Maximum 0.10186 
Standard deviation 0.012806 
Skewness -0.6828 
Kurtosis 23.689 
 
Mean and median of daily returns differ significantly, which is in breach of 
normality assumption. Both mean and median differ significantly from zero. Mean 
shows a very strong positive trend similar to SKSM index. Skewness and excess 
kurtosis are different from zero. In the observed period VIN index experienced 
extreme daily returns. The highest daily gain in the analysed period was 10,19%, 
while the highest daily loss amounted to huge – 15,67%. Asymmetry is negative (-
0,6828) and very close to value of PX50 index, meaning that the distribution slopes 
to the left and negative returns are expected to occur more frequently than positive. 
Excess kurtosis of 23,69 indicates that the empirical probability distribution of VIN 
index has significantly fatter tails than assumed under normal distribution. Excess 
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kurtosis is much higher than detected in other indexes with SBI20 and CROBEX 
index having the most similar values.  
 
Although significant linear dependence could be expected between CROBEX and 
VIN index, since they both represent the same market their descriptive statistics, in 
particular higher moments around the mean, tell a different story. Both CROBEX 
and VIN index have significant positive means and medians in the entire analysed 
period. This clearly points to the conclusion that securities composing these two 
indexes had a steady positive mean, resulting in considerable capital gains for the 
investors. In the analysed period VIN index was less volatile and more profitable 
than CROBEX. For the entire analysed period VIN index had negative skewness of 
–0,6828, while CROBEX index had positive skewness of 0,754. This fact is very 
important for the investors meaning that the probability of positive returns occurring 
is far greater when investing in CROBEX index than in VIN index although they 
represent the same market. Pronounced kurtosis shows that investors investing on 
Varaždin stock exchange can expect to experience even higher profits/losses than 
when investing on Zagreb stock exchange. Combining the third and fourth moment 
of the VIN index with its mean and standard deviation, it can be concluded that 
although in the entire observation period, negative returns were more frequent than 
positive returns, the magnitude of the positive returns was significantly higher than 
the magnitude of loses, resulting in a strong positive trend for VIN index. These 
characteristics of VIN index, similar to BUX, PX50, CROBEX and SKSM index, 
resulted in a strong positive trend and continually increasing index values.   
 
 To determine if the daily returns of VIN index are normally distributed, normality 
of empirical distribution is tested by Jarque-Bera test and Lilliefors test. Normality 
tests for the VIN index are presented in table 64. 
 
Table 64 - Normality tests for VIN index daily log returns, period 04.01.2000 - 

31.12.2005 (1480 observations) 
Jarque-Bera test 26,430 
(p value) 0 
Lilliefors test 0.10509 

(p value) 0 
 
Both normality tests show that the hypothesis of normality of returns for VIN index, 
for the entire analysed period, should be rejected at 5% significance level. 
Probability values of distribution of returns being normal, according to both 
normality tests are zero, strongly indicating that there is no possibility that the 
returns on this index are normally distributed. The distribution of VIN index returns 
is leptokurtotic and not symmetrical i.e. it skews to the left, as can be seen from 
figures 78 and 79, as well as from table 65. Figure 79 and table 65 show that the true 
empirical distribution of VIN index daily returns is far better approximated by a 
Student’s t distribution with 2,33 degrees of freedom, than it is by normal 
distribution. 
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Figure 79 - Probability plot for VIN index daily log returns, period 04.01.2000 - 
31.12.2005 (1480 observations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 65 - Parameters of fitted Normal and Students' T distribution to VIN index 

daily log returns, period 04.01.2000 - 31.12.2005 (1480 observations) 

 
 
 
Presence of autocorrelation in VIN daily log returns is tested by examining its 
sample autocorrelation and sample partial correlation function (Figure 80), and 
calculating Ljung-Box Q-statistic for mean adjusted VIN returns (Table 66).  
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Distribution:    Normal Distribution:    t location-scale

Log likelihood:  3989.65 Log likelihood:  4243.54

Mean:            0.001267 Mean:            0.000639

Variance:        0.000172 Variance:        0.000335

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         0.001267 0.000354 mu         0.000639 0.000233

sigma      0.013102 0.000251 sigma       0.006851 0.000274

df           2.32543 0.191813

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     1.25E-07 -5.26E-24 mu     5.45E-08 6.01E-09 4.23E-06

sigma  -5.26E-24 6.28E-08 sigma  6.01E-09 7.53E-08 3.57E-05

df     4.23E-06 3.57E-05 0.036792
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Figure 80 - Sample autocorrelation and sample partial correlation function of VIN 
index daily log returns, period 04.01.2000 - 04.12.2003 (980 
observations) 
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Table 66 - Ljung-Box-Pierce Q-test for mean adjusted VIN index daily log returns, 

period 04.01.2000 - 04.12.2003 (980 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 2.03E-09 49.194 11.07 
10 1 1.38E-11 72.617 18.307 
15 1 1.89E-10 77.632 24.996 
20 1 2.47E-09 81.185 31.41 

 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic found the presence of autocorrelation in the VIN daily log returns meaning 
that the Varaždin stock market is not very efficient since the direction of the market 
can be predicted. To extract the autocorrelation from the data it will be necessary to 
use an ARMA (p, q) model. 
 
After the presence of autocorrelation in the daily log returns has been investigated it 
is necessary to test the squared log returns for presence of autocorrelation i.e. 
heteroskedasticity. Presence of heteroskedasticity in VIN returns is tested by 
examining its sample autocorrelation and sample partial correlation function of 
squared returns (Figure 81), calculating Ljung-Box Q-statistic for mean adjusted 
squared VIN returns (Table 67) and ARCH test for mean adjusted VIN returns 
(Table 68). 
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Figure 81 - Sample autocorrelation and sample partial correlation function of 
squared VIN index daily log returns, period 04.01.2000 - 04.12.2003 
(980 observations) 
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Table 67 - Ljung-Box-Pierce Q-test for mean adjusted squared VIN index daily log 

returns, period 04.01.2000 - 04.12.2003 (980 observations) 
Period 
(days) 

H p-value Statistic Critical 
value 

5 1 0 139.94 11.07 
10 1 0 140.6 18.307 
15 1 0 150.57 24.996 
20 1 0 156.2 31.41 

 
Table 68 - ARCH test for mean adjusted VIN index daily log returns, period 

04.01.2000 - 04.12.2003 (980 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 147.3 11.07 
10 1 0 148.29 18.307 
15 1 0 157.28 24.996 
20 1 0 158.84 31.41 

 
Sample autocorrelation and sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is 
significant autocorrelation and ARCH effects present in VIN daily log returns, 
meaning that the returns on VIN index are not IID.  
 
Since the employed tests discovered significant autocorrelation and 
heteroskedasticity in the VIN daily returns it is necessary to model the data in order 
to obtain independently and identically distributed returns. Because autocorrelation 
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has been detected in both returns and squared returns, VIN index returns will be 
modelled as an ARMA-GARCH process in order to deal with both types of 
dependence. Estimated ARMA-GARCH parameters for VIN index are given in table 
69. 
 
Table 69 - Estimated ARMA-GARCH parameters for VIN index daily log returns, 

period 04.01.2000 - 04.12.2003 (980 observations) 
 

  
According to their t statistics all of the estimated parameters are statistically 
significant, except the mean drift that is statistically insignificant and will be 
assumed to equal zero. The obtained model is a normally distributed AR(1)-
GARCH(1,1) model: 
 

ttt rr ε++−= −1145.00000723.0  

 
2

1
2

1
2 78932.01405.00525.1 −− ++−= ttt E σεσ  

 
Similarly to SBI20 and SKSM index the conditional volatility model for VIN index 
is also far from being integrated. The plot of fitted AR-GARCH model innovations, 
conditional standard deviations and observed VIN index daily log returns are given 
in figure 82.  
 
 
 
 
 
 
 
 
 
 

Mean: ARMA(1,0) 

Variance: GARCH(1,1)

  Conditional Probability Distribution: Gaussian

C -7.23E-05 0.000367 -0.1968

AR(1) 1.45E-01 0.034035 4.2476

K 1.25E-05 1.51E-06 8.2774

GARCH(1) 0.78932 0.022073 35.7604

ARCH(1) 0.1405 0.020087 6.9949

Parameter Value  
Standard 

error
T statistic 
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Figure 82 - Plot of fitted AR-GARCH model innovations, conditional standard 
deviations and observed VIN index daily log returns, period 04.01.2000 
- 04.12.2003 

 
 
If the fitted AR-GARCH model is appropriate for describing the dynamics of 
underlying data generating process the standardised innovation from such AR-
GARCH model should be independently and identically distributed (Figure 83). The 
adequacy of fitted AR-GARCH model can be statistically tested in the same manner 
as returns and squared returns.  
 
Figure 83 - Standardised innovations from fitted AR-GARCH model for VIN index 

daily log returns, period 04.01.2000 - 04.12.2003 

 
 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic of standardised innovation detect no presence of autocorrelation in the 
standardised innovations from fitted AR-GARCH model, meaning that the 
conditional mean model (AR(1)) successfully captured the autocorrelation present in 
VIN returns (Figure 84, Table 70).  
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Figure 84 - Sample autocorrelation and sample partial correlation function of 
standardized innovations from VIN index daily log returns, period 
04.01.2000 - 04.12.2003 
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Table 70 - Ljung-Box-Pierce Q-test for standardised innovations from VIN index 

daily log returns, period 04.01.2000 - 04.12.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.3503 5.5707 11.07 
10 0 0.3744 10.7862 18.307 
15 0 0.5987 13.0465 24.996 

20 0 0.7874 14.8054 31.41 
 
Sample autocorrelation and sample partial correlation function, Ljung-Box Q-
statistic of squared standardised innovation and ARCH test of standardised 
innovations detect no presence of autocorrelation in the squared standardised 
innovations from fitted AR-GARCH model. This indicates that the conditional 
variance model (GARCH(1,1)) successfully captured the heteroskedasticity present 
in VIN returns (Figure 85, Tables 71, 72). 
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Figure 85 - Sample autocorrelation and sample partial correlation function of 
squared standardized innovations from VIN index daily log returns, 
period 04.01.2000 - 04.12.2003 
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Table 71 - Ljung-Box-Pierce Q-test for squared standardised innovations from VIN 

index daily log returns, period 04.01.2000 - 04.12.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.3896 5.2203 11.07 
10 0 0.73875 6.8583 18.307 
15 0 0.19945 19.324 24.996 

20 0 0.26924 23.407 31.41 
 
Table 72 - ARCH test for standardised innovations from VIN index daily log 

returns, period 04.01.2000 - 04.12.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.42952 4.8894 11.07 
10 0 0.76363 6.5886 18.307 
15 0 0.2003 19.304 24.996 

20 0 0.30075 22.76 31.41 
 
Findings of the performed tests imply that the fitted AR(1)-GARCH(1,1) model 
adequately describes the dynamics of VIN index daily returns. 
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6.3.8 Estonia – TALSE index 
 
Trading on the Tallin Stock Exchange (TSE-OMX) started in 1995. The TALSE 
(later changed its name into OMX Tallin Index) index was launched in 1996 with 
the initial value of 100 points. 
 
The analysis of the TALSE stock index is performed for the period 03.01.2000 – 
31.12.2005. In this observation period the obtained sample from TALSE index 
consists of 1522 daily index value observations. The evolution of index values and 
returns is displayed in Figures 86, 87 and 88. 
 
Figure 86 - Daily values of TALSE index, period 03.01.2000 - 31.12.2005 (1522 

observations) 

 
Figure 87 - Daily log returns of TALSE index, period 03.01.2000 - 31.12.2005 

(1521 observations) 
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Figure 88 - Histogram of daily log returns of TALSE index, period 03.01.2000 - 
31.12.2005 (1521 observations) 
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From figures 86, 87 and 88 it is visible that there is significant volatility clustering 
and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. 
 
Basic descriptive statistics for TALSE index in the period 03.01.2000 - 31.12.2005 
are presented in table 73. 
 
Table 73 - Basic statistics for TALSE index daily log returns, period 03.01.2000 - 

31.12.2005 (1521 observations) 
Mean 0.001016 
Median 0.000965 
Minimum -0.05874 
Maximum 0.073425 
Standard deviation 0.010472 
Skewness 0.22481 
Kurtosis 9.0341 
 
Mean and median of daily returns are very similar and show a significant positive 
trend that is similar to SBI20 and VIN index. Excess kurtosis and skewness of 
TALSE index are different from zero. In the observed period TALSE index 
experienced extreme daily returns. The highest daily gain in the analysed period was 
7,34%, while the highest daily loss amounted to – 5,87%. Asymmetry is slightly 
positive (0,2248), meaning that the distribution slopes slightly to the right and 
positive returns are expected to occur more frequently than negative. Excess kurtosis 
of 9,03 indicates that the empirical probability distribution of TALSE index has 
significantly fatter tails than assumed under normal distribution. Excess kurtosis is 
similar to excess kurtosis detected in CEE countries.  
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Combining the third and fourth moment of the TALSE index with the mean and 
standard deviation, it can be concluded that in the observed period, frequency of 
positive and negative returns was very similar but the magnitude of the positive 
returns was significantly higher than the magnitude of loses. These characteristics of 
TALSE index, very similar to CEE countries, resulted in a strong positive trend. To 
determine if the daily returns of TALSE index are normally distributed, normality of 
empirical distribution is tested by Jarque-Bera test and Lilliefors test. Normality 
tests for the TALSE index are presented in table 74. 
 
Table 74 - Normality tests for TALSE index daily log returns, period 03.01.2000 - 

31.12.2005 (1521 observations) 
Jarque-Bera test 2,311.2 
(p value) 0 
Lilliefors test 0.079737 
(p value) 0 
 
Both normality tests show that the hypothesis of normality of returns for TALSE 
index, for the entire analysed period, should be rejected at 5% significance level. 
Probability values of distribution of returns being normal, according to both 
normality tests are zero, strongly indicating that there is no possibility that the 
returns on this index are normally distributed. The distribution of TALSE index 
returns is leptokurtotic and slightly asymmetrical i.e. it skews slightly to the right, as 
can be seen from figures 88 and 89, as well as from table 75. Figure 89 and table 75 
show that the true empirical distribution of TALSE index daily returns is far better 
approximated by a Student’s t distribution with 3,02 degrees of freedom, than it is 
by normal distribution. 
 
Figure 89 - Probability plot for TALSE index daily log returns, period 03.01.2000 - 

31.12.2005 (1521 observations) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

0.01  
0.05  
0.1   
0.25  
0.5   
0.75  
0.9   
0.95  
0.99  

Data

Probability

TALSE returns

TALSE student T

TALSE normal



Chapter 6 Measuring market risk in transition countries   271 

 

Table 75 - Parameters of fitted Normal and Students' T distribution to TALSE index 
daily log returns, period 03.01.2000 - 31.12.2005 (1521 observations) 

 
Presence of autocorrelation in TALSE daily log returns is tested by examining its 
sample autocorrelation and sample partial correlation function (Figure 90), and 
calculating Ljung-Box Q-statistic for mean adjusted TALSE returns (Table 76).  
  
Figure 90 - Sample autocorrelation and sample partial correlation function of 

TALSE index daily log returns, period 03.01.2000 - 15.01.2004 (1021 
observations) 
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Distribution:    Normal Distribution:    t location-scale

Log likelihood:  4359.9 Log likelihood:  4498.75

Mean:            0.00103 Mean:            0.000981

Variance:        1.17E-04 Variance:        1.40E-04

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         0.00103 0.000288 mu         0.000981 0.000223

sigma      0.010798 0.000204 sigma       0.006871 0.000262

df           3.0153 0.298383

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     8.32E-08 -3.25E-24 mu     4.98E-08 1.56E-10 1.86E-07

sigma  -3.25E-24 4.16E-08 sigma  1.56E-10 6.84E-08 5.49E-05

df     1.86E-07 5.49E-05 0.089033
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Table 76 - Ljung-Box-Pierce Q-test for mean adjusted TALSE index daily log 
returns, period 03.01.2000 - 15.01.2004 (1021 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 2.23E-07 39.136 11.07 
10 1 2.66E-07 50.009 18.307 
15 1 8.12E-07 57.027 24.996 
20 1 1.69E-06 63.989 31.41 

 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic found the presence of autocorrelation in the TALSE daily log returns 
meaning that the Estonian stock market is not very efficient since the direction of the 
market can be predicted. To extract the autocorrelation from the data it will be 
necessary to use an ARMA (p, q) model. 
 
After the presence of autocorrelation in the daily log returns has been investigated it 
is necessary to test the squared log returns for presence of autocorrelation i.e. 
heteroskedasticity. Presence of heteroskedasticity in TALSE returns is tested by 
examining its sample autocorrelation and sample partial correlation function of 
squared returns (Figure 91), calculating Ljung-Box Q-statistic for mean adjusted 
squared TALSE returns (Table 77) and ARCH test for mean adjusted TALSE 
returns (Table 78). 
 
Figure 91 - Sample autocorrelation and sample partial correlation function of 

squared TALSE index daily log returns, period 03.01.2000 - 15.01.2004 
(1021 observations) 
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Table 77 - Ljung-Box-Pierce Q-test for mean adjusted squared TALSE index daily 
log returns, period 03.01.2000 - 15.01.2004 (1021 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 3.66E-07 38.067 11.07 
10 1 1.10E-10 67.961 18.307 
15 1 1.48E-09 72.691 24.996 
20 1 3.08E-12 97.829 31.41 

 
Table 78 - ARCH test for mean adjusted TALSE index daily log returns, period 

03.01.2000 - 15.01.2004 (1021 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 4.25E-06 32.735 11.07 
10 1 8.83E-07 47.16 18.307 
15 1 2.86E-05 47.688 24.996 
20 1 1.52E-06 64.279 31.41 

 
Sample autocorrelation and sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is 
significant autocorrelation and ARCH effects present in TALSE daily log returns, 
meaning that the returns on TALSE index are not IID. Since the employed tests 
discovered significant autocorrelation and heteroskedasticity in the TALSE daily 
returns it is necessary to model the data in order to obtain independently and 
identically distributed returns. Because autocorrelation has been detected in both 
returns and squared returns, TALSE index returns will be modelled as an ARMA-
GARCH process in order to deal with both types of dependence. Estimated ARMA-
GARCH parameters for TALSE index are given in table 79. 
 
Table 79 - Estimated ARMA-GARCH parameters for TALSE index daily log 

returns, period 03.01.2000 - 15.01.2004 (1021 observations) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mean: 

Variance: 

C 9.60E-04 0.000425 2.2614

MA(1) 2.16E-01 0.035403 6.0955

MA(2) 9.23E-02 0.033881 2.7252

K 6.76E-06 1.84E-06 3.673

GARCH(1) 0.84035 0.026909 31.2295

ARCH(1) 0.10469 0.018945 5.5263

ARMA(0,2) 

GARCH(1,1)

  Conditional Probability Distribution: Gaussian

Parameter Value  

Standard 

error T statistic 
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All of the estimated parameters are statistically significant according to their t 
statistics. The obtained model is a normally distributed MA(2)-GARCH(1,1) model: 
 

ttttr εεε +++= −− 21 0923.0216.000096.0  

 
2

1
2

1
2 84035.010469.00676.6 −− ++−= ttt E σεσ  

 
The plot of fitted MA-GARCH model innovations, conditional standard deviations 
and observed TALSE index daily log returns are given in figure 92.  
 
Figure 92 - Plot of fitted MA-GARCH model innovations, conditional standard 

deviations and observed TALSE index daily log returns, period 
03.01.2000 - 15.01.2004 

 
 
If the fitted MA-GARCH model is appropriate for describing the dynamics of 
underlying data generating process the standardised innovation from such MA-
GARCH model should be independently and identically distributed (Figure 93). The 
adequacy of fitted MA-GARCH model can be statistically tested in the same manner 
as returns and squared returns.  
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Figure 93 - Standardised innovations from fitted MA-GARCH model for TALSE 
index daily log returns, period 03.01.2000 - 15.01.2004 

 
 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic of standardised innovation detect no presence of autocorrelation in the 
standardised innovations from fitted MA-GARCH model, meaning that the 
conditional mean model (MA(2)) successfully captured the autocorrelation present 
in TALSE returns (Figure 94, Table 80).  
 
Figure 94 - Sample autocorrelation and sample partial correlation function of 

standardized innovations from TALSE index daily log returns, period 
03.01.2000 - 15.01.2004 
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Table 80 - Ljung-Box-Pierce Q-test for standardised innovations from TALSE index 

daily log returns, period 03.01.2000 - 15.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.84405 2.0367 11.07 
10 0 0.83724 5.7322 18.307 
15 0 0.69937 11.73 24.996 
20 0 0.56092 18.402 31.41 
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Sample autocorrelation and sample partial correlation function, Ljung-Box Q-
statistic of squared standardised innovation and ARCH test of standardised 
innovations detect no presence of autocorrelation in the squared standardised 
innovations from fitted MA-GARCH model. This indicates that the conditional 
variance model (GARCH(1,1)) successfully captured the heteroskedasticity present 
in TALSE returns (Figure 95, Tables 81, 82). 
 
Figure 95 - Sample autocorrelation and sample partial correlation function of 

squared standardized innovations from TALSE index daily log returns, 
period 03.01.2000 - 15.01.2004 
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Table 81 - Ljung-Box-Pierce Q-test for squared standardised innovations from 

TALSE index daily log returns, period 03.01.2000 - 15.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.47174 4.5612 11.07 
10 0 0.83132 5.8057 18.307 
15 0 0.85566 9.4005 24.996 
20 0 0.82156 14.174 31.41 

 
Table 82 - ARCH test for standardised innovations from TALSE index daily log 

returns, period 03.01.2000 - 15.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.45389 4.6976 11.07 
10 0 0.82656 5.8639 18.307 
15 0 0.87868 8.9777 24.996 

20 0 0.83088 13.992 31.41 
 
Findings of the performed tests imply that the fitted MA(2)-GARCH(1,1) model 
adequately describes the dynamics of TALSE index daily returns. 
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6.3.9 Latvia – RIGSE index 
 
Trading on the Riga Stock Exchange (RSE-OMX) started in 1993. The RIGSE (later 
changed its name into OMX Riga Index) index was launched in 2000 with the initial 
value of 100 points. 
 
The analysis of the RIGSE stock index is performed for the period 03.01.2000 – 
31.12.2005. In this observation period the obtained sample from RIGSE index 
consists of 1555 daily index value observations. The evolution of index values and 
returns is displayed in Figures 96, 97 and 98. 
 
Figure 96 - Daily values of RIGSE index, period 03.01.2000 - 31.12.2005 (1555 

observations) 

 
 
Figure 97 - Daily log returns of RIGSE index, period 03.01.2000 - 31.12.2005 (1554 

observations) 
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Figure 98 - Histogram of daily log returns of RIGSE index, period 03.01.2000 - 
31.12.2005 (1554 observations) 
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From figures 96, 97 and 98 it is visible that there is significant volatility clustering 
and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. Basic 
descriptive statistics for RIGSE index in the period 03.01.2000 - 31.12.2005 are 
presented in table 83. 
 
Table 83 - Basic statistics for RIGSE index daily log returns, period 03.01.2000 - 

31.12.2005 (1554 observations) 
Mean 0.001202 
Median 0.000608 
Minimum -0.14705 
Maximum 0.094609 
Standard deviation 0.016286 
Skewness -1.2783 
Kurtosis 23.563 
 
Mean and median of daily returns are significantly different and show a significant 
positive trend that is similar to TALSE index. Skewness and excess kurtosis are 
different from zero. In the observed period RIGSE index experienced extreme daily 
returns. The highest daily gain in the analysed period was 9,46%, while the highest 
daily loss amounted to – 14,71%, maximum values very similar to VIN index. 
Asymmetry is negative (-1,278), meaning that the distribution slopes to the left and 
negative returns are expected to occur more frequently than positive. Excess kurtosis 
of 23,563 indicates that the empirical probability distribution of RIGSE index has 
significantly fatter tails than assumed under normal distribution. Excess kurtosis is 
much higher than detected in TALSE index and majority of CEE countries but very 
similar to Croatian indexes. 
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Combining the third and fourth moment of the RIGSE index with its mean and 
standard deviation, it can be concluded that although in the entire observation 
period, negative returns were more frequent than positive returns, the magnitude of 
the positive returns was significantly higher than the magnitude of loses, resulting in 
a strong positive trend for RIGSE index. These characteristics of RIGSE index, very 
similar to CEEC indexes, resulted in a strong positive trend for the index. To 
determine if the daily returns of RIGSE index are normally distributed, normality of 
empirical distribution is tested by Jarque-Bera test and Lilliefors test. Normality 
tests for the RIGSE index are presented in table 84. 
 

Table 84 - Normality tests for RIGSE index daily log returns, period 03.01.2000 - 
31.12.2005 (1554 observations) 

Jarque-Bera test 27,721 
(p value) 0 
Lilliefors test 0.15709 
(p value) 0 
 

Both normality tests show that the hypothesis of normality of returns for RIGSE, for 
the entire analysed period, should be rejected at 5% significance level. Probability 
values of distribution of returns being normal, according to both normality tests are 
zero, strongly indicating that there is no possibility that the returns on this index are 
normally distributed. The distribution of RIGSE index returns is leptokurtotic and 
asymmetrical i.e. it skews strongly to the left, as can be seen from figures 98 and 99, 
as well as from table 85. Figure 99 and table 85 show that the true empirical 
distribution of RIGSE index daily returns is far better approximated by a Student’s t 
distribution with 1,61 degrees of freedom, than it is by normal distribution. 
Student’s t distribution with 1,61 degrees of freedom has a finite mean because df > 
1, but infinite variance since df < 2, meaning that the empirical distribution of 
RIGSE index could be treated as being nearly a Lorentzian distribution. 
 

Figure 99 - Probability plot for RIGSE index daily log returns, period 03.01.2000 - 
31.12.2005 (1554 observations) 
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Table 85 - Parameters of fitted Normal and Students' T distribution to RIGSE index 
daily log returns, period 03.01.2000 - 31.12.2005 (1554 observations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Presence of autocorrelation in RIGSE daily log returns is tested by examining its 
sample autocorrelation, sample partial correlation function (Figure 100) and 
calculating Ljung-Box Q-statistic for mean adjusted RIGSE returns (Table 86).  
  
Figure 100 - Sample autocorrelation and sample partial correlation function of 

RIGSE index daily log returns, period 03.01.2000 - 15.01.2004 (1054 
observations) 
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Distribution:    Normal Distribution:    t location-scale

Log likelihood:  3836.88 Log likelihood:  4442.56

Mean:            0.001056 Mean:            0.00076

Variance:        2.80E-04 Variance:        Inf

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         0.001056 0.000442 mu         0.00076 0.000193

sigma      0.016731 0.000312 sigma       0.005559 0.00023

df           1.60802 0.100002

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     1.95E-07 6.34E-25 mu     3.71E-08 2.02E-09 8.26E-07

sigma  6.34E-25 9.76E-08 sigma  8.26E-07 1.44E-05 1.00E-02

df     8.26E-07 1.44E-05 0.01
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Table 86 - Ljung-Box-Pierce Q-test for mean adjusted RIGSE index daily log 
returns, period 03.01.2000 - 15.01.2004 (1054 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 116.27 11.07 
10 1 0 193.79 18.307 
15 1 0 268.27 24.996 
20 1 0 326.72 31.41 

 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic found the presence of autocorrelation in the RIGSE daily log returns 
meaning that the Latvian stock market is not very efficient since the direction of the 
market can be predicted. To extract the autocorrelation from the data it will be 
necessary to use an ARMA (p, q) model. 
 
After the presence of autocorrelation in the daily log returns has been investigated it 
is necessary to test the squared log return for presence of autocorrelation i.e. 
heteroskedasticity. Presence of heteroskedasticity in RIGSE returns is tested by 
examining its sample autocorrelation and sample partial correlation function of 
squared returns (Figure 101), calculating Ljung-Box Q-statistic for mean adjusted 
squared RIGSE returns (Table 87) and ARCH test for mean adjusted RIGSE returns 
(Table 88). 
 
Figure 101 - Sample autocorrelation and sample partial correlation function of 

squared RIGSE index daily log returns, period 03.01.2000 - 15.01.2004 
(1054 observations) 
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Table 87 - Ljung-Box-Pierce Q-test for mean adjusted squared RIGSE index daily 
log returns, period 03.01.2000 - 15.01.2004 (1054 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 1089.1 11.07 
10 1 0 1631 18.307 
15 1 0 2320.2 24.996 
20 1 0 2650.4 31.41 

 

Table 88 - ARCH test for mean adjusted RIGSE index daily log returns, period 
03.01.2000 - 15.01.2004 (1054 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 514.28 11.07 
10 1 0 548.49 18.307 
15 1 0 601.38 24.996 
20 1 0 623.8 31.41 

 

Sample autocorrelation and sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is 
significant autocorrelation and ARCH effects present in RIGSE daily log returns, 
meaning that the returns on RIGSE index are not IID. The results are that much 
more indicative when considering that the hypothesis of IID was rejected for all the 
tested time lags (5, 10, 15 and 20 days). Since the employed tests discovered 
significant autocorrelation and heteroskedasticity in the RIGSE daily returns it is 
necessary to model the data in order to obtain independently and identically 
distributed returns. Because autocorrelation has been detected in both returns and 
squared returns, RIGSE index returns will be modelled as an ARMA-GARCH 
process in order to deal with both types of dependence. Estimated ARMA-GARCH 
parameters for RIGSE index are given in table 89. 
 

Table 89 - Estimated ARMA-GJR GARCH parameters for RIGSE index daily log 
returns, period 03.01.2000 - 15.01.2004 (1054 observations) 

 

 
 
 
 
 
 
 
 
 
 
 
 

Mean: 

Variance: 

C 0.000755 0.000396 1.9084

MA(1) -0.13221 0.059682 -2.2152

K 4.69E-06 2.18E-06 2.1481

GARCH(1) 0.90381 0.026029 34.7227

ARCH(1) 0.069603 0.018137 3.8376

 Leverage(1)    -0.39327 0.098331 -3.9994

ARMA(0,1) 

GJR GARCH(1,1)

  Conditional Probability Distribution: Gaussian

Parameter Value  

Standard 

error T statistic 
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Significant leverage effect was discovered in the RIGSE daily log returns. To 
incorporate this characteristic of RIGSE index, the conditional volatility model had 
to be specified as a GJR-GARCH model. All of the estimated parameters are 
statistically significant according to their t statistics. The obtained model is a 
normally distributed MA(1)-GJR GARCH(1,1) model: 
 

tttr εε +−= −113221.0000755.0  

 

[ ] 2
1

2
1

2 90381.039327.0069603.00669.64 −− +−+−= tttt IE σεσ  

 
The plot of fitted MA-GJR GARCH model innovations, conditional standard 
deviations and observed RIGSE index daily log returns is given in figure 102.  
 
Figure 102 - Plot of fitted MA-GJR GARCH model innovations, conditional 

standard deviations and observed RIGSE index daily log returns, period 
03.01.2000 - 15.01.2004 

 
 
If the fitted MA-GJR GARCH model is appropriate for describing the dynamics of 
underlying data generating process the standardised innovation from such MA-GJR 
GARCH model should be independently and identically distributed (Figure 103). 
The adequacy of fitted MA-GJR GARCH model can be statistically tested in the 
same manner as returns and squared returns.  
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Figure 103 - Standardised innovations from fitted MA-GJR GARCH model for 
RIGSE index daily log returns, period 03.01.2000 - 15.01.2004 

 

 
 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic of standardised innovation detect no presence of autocorrelation in the 
standardised innovations from fitted MA-GJR GARCH model, meaning that the 
conditional mean model (MA(1)) successfully captured the autocorrelation present 
in RIGSE returns (Figure 104, Table 90).  
 
Figure 104 - Sample autocorrelation and sample partial correlation function of 

standardized innovations from RIGSE index daily log returns, period 
03.01.2000 - 15.01.2004 
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Table 90 - Ljung-Box-Pierce Q-test for standardised innovations from RIGSE index 

daily log returns, period 03.01.2000 - 15.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.15415 8.0381 11.07 
10 0 0.27108 12.213 18.307 
15 0 0.23456 18.556 24.996 

20 0 0.32222 22.342 31.41 
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Sample autocorrelation, sample partial correlation function, Ljung-Box Q-statistic of 
squared standardised innovation and ARCH test of standardised innovations detect 
no presence of autocorrelation in the squared standardised innovations from fitted 
MA-GJR GARCH model. This indicates that the conditional variance model (GJR 
GARCH(1,1)) successfully captured the heteroskedasticity present in RIGSE returns 
(Figure 105, Tables 91, 92). 
 
Figure 105 - Sample autocorrelation and sample partial correlation function of 

squared standardized innovations from RIGSE index daily log returns, 
period 03.01.2000 - 15.01.2004 
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Table 91 - Ljung-Box-Pierce Q-test for squared standardised innovations from 

RIGSE index daily log returns, period 03.01.2000 - 15.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.86265 1.9012 11.07 
10 0 0.97805 3.1356 18.307 
15 0 0.99369 4.8001 24.996 

20 0 0.83904 13.829 31.41 
 
Table 92 - ARCH test for standardised innovations from RIGSE index daily log 

returns, period 03.01.2000 - 15.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.85756 1.9387 11.07 
10 0 0.97914 3.0935 18.307 
15 0 0.99401 4.7546 24.996 

20 0 0.84601 13.687 31.41 
 
Findings of the performed tests imply that the fitted MA(1)-GJR GARCH(1,1) 
model adequately describes the dynamics of RIGSE index daily returns. 
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6.3.10 Lithuania – VILSE index 
 
Trading on the Vilnius Stock Exchange (VSE-OMX) started in 1993. The VILSE 
(later changed its name into OMX Vilnius Index) index was launched in 2000 with 
the initial value of 100 points. 
 
The analysis of the VILSE stock index is performed for the period 03.01.2000 – 
31.12.2005. In this observation period the obtained sample from VILSE index 
consists of 1504 daily index value observations. The evolution of index values and 
returns is displayed in Figures 106, 107 and 108. 
 
Figure 106 - Daily values of VILSE index, period 04.01.2000 - 31.12.2005 (1504 

observations) 

 
Figure 107 - Daily log returns of VILSE index, period 04.01.2000 - 31.12.2005 

(1503 observations) 
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Figure 108 - Histogram of daily log returns of VILSE index, period 04.01.2000 - 
31.12.2005 (1503 observations) 
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From figures 106, 107 and 108 it is visible that there is significant volatility 
clustering and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. 
 
Basic descriptive statistics for VILSE index in the period 04.01.2000 - 31.12.2005 
are presented in table 93. 
 
Table 93 - Basic statistics for VILSE index daily log returns, period 04.01.2000 - 

31.12.2005 (1503 observations) 
Mean 0.000993 
Median 0.000814 
Minimum -0.10216 
Maximum 0.053092 
Standard deviation 0.008965 
Skewness -0.64913 
Kurtosis 17.469 
 
Mean and median of daily returns are very similar and show a strong positive trend 
that is similar to TALSE and RIGSE index. Skewness and excess kurtosis are 
different from zero. In the observed period VILSE index experienced extreme daily 
returns. The highest daily gain in the analysed period was 5,31%, while the highest 
daily loss amounted to – 10,22%, similar values to RIGSE index. Asymmetry is 
negative (-0.649), a characteristic shared with RIGSE index, meaning that the 
distribution slopes to the left and negative returns are expected to occur more 
frequently than positive. Excess kurtosis of 17.469 indicates that the empirical 
probability distribution of VILSE index has significantly fatter tails than assumed 
under normal distribution. Excess kurtosis is similar to the value detected for RIGSE 
index, and greater than detected in TALSE index and majority of CEE countries. 
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Combining the third and fourth moment of the VILSE index with its mean and 
standard deviation, it can be concluded that although in the entire observation 
period, negative returns were more frequent than positive returns, the magnitude of 
the positive returns was significantly higher than the magnitude of loses, resulting in 
a strong positive trend for VILSE index. These characteristics of VILSE index, very 
similar to RIGSE index and CEEC indexes, resulted in a strong positive trend for the 
index. To determine if the daily returns of VILSE index are normally distributed, 
normality of empirical distribution is tested by Jarque-Bera test and Lilliefors test. 
Normality tests for the VILSE index are presented in table 94. 
 

Table 94 - Normality tests for VILSE index daily log returns, period 04.01.2000 - 
31.12.2005 (1503 observations) 

Jarque-Bera test 13,174 
(p value) 0 
Lilliefors test 0.083442 

(p value) 0 
 

Both normality tests show that the hypothesis of normality of returns for VILSE 
index, for the entire analysed period, should be rejected at 5% significance level. 
Probability values of distribution of returns being normal, according to both 
normality tests are zero, strongly indicating that there is no possibility that the 
returns on this index are normally distributed. The distribution of VILSE index 
returns is leptokurtotic and asymmetrical i.e. it skews slightly to the left, as can be 
seen from figures 108 and 109, as well as from table 95. Figure 109 and table 95 
show that the true empirical distribution of VILSE index daily returns is far better 
approximated by a Student’s t distribution with 3,3 degrees of freedom, than it is by 
normal distribution. 
 

Figure 109 - Probability plot for VILSE index daily log returns, period 04.01.2000 - 
31.12.2005 (1503 observations) 
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Table 95 - Parameters of fitted Normal and Students' T distribution to VILSE index 
daily log returns, period 04.01.2000 - 31.12.2005 (1503 observations) 

 
Presence of autocorrelation in VILSE daily log returns is tested by examining its 
sample autocorrelation, sample partial correlation function (Figure 110) and 
calculating Ljung-Box Q-statistic for mean adjusted VILSE returns (Table 96).  
 
Figure 110 - Sample autocorrelation and sample partial correlation function of 

VILSE index daily log returns, period 04.01.2000 - 29.12.2003 (1003 
observations) 
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Distribution:    Normal Distribution:    t location-scale

Log likelihood:  4953.66 Log likelihood:  5125.24

Mean:            0.000993 Mean:            0.000822

Variance:        8.04E-05 Variance:        8.55E-05

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         0.000993 0.000231 mu         0.000822 0.000181

sigma      0.008965 0.000164 sigma       0.005797 0.000199

df           3.29562 0.316159

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     5.35E-08 1.13E-24 mu     3.26E-08 7.86E-10 1.33E-06

sigma  1.13E-24 2.68E-08 sigma  7.86E-10 3.95E-08 4.23E-05

df     1.33E-06 4.23E-05 0.099957
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Table 96 - Ljung-Box-Pierce Q-test for mean adjusted VILSE index daily log 
returns, period 04.01.2000 - 29.12.2003 (1003 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 4.25E-11 57.368 11.07 
10 1 2.38E-12 76.543 18.307 
15 1 6.69E-14 96.242 24.996 
20 1 8.18E-13 101.05 31.41 

 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic found a highly structured mean in the VILSE daily log returns, meaning that 
the Lithuanian stock market is not very efficient since the direction of the market 
can be predicted. To extract this structure from the data it will be necessary to use a 
more elaborate ARMA (p, q) model. 
 
After the presence of autocorrelation in the daily log returns has been investigated it 
is necessary to test the squared log returns for presence of autocorrelation i.e. 
heteroskedasticity. Presence of heteroskedasticity in VILSE returns is tested by 
examining its sample autocorrelation and sample partial correlation function of 
squared returns (Figure 111), calculating Ljung-Box Q-statistic for mean adjusted 
squared VILSE returns (Table 97) and ARCH test for mean adjusted VILSE returns 
(Table 98). 
 
Figure 111 - Sample autocorrelation and sample partial correlation function of 

squared VILSE index daily log returns, period 04.01.2000 - 29.12.2003 
(1003 observations) 
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Table 97 - Ljung-Box-Pierce Q-test for mean adjusted squared VILSE index daily 
log returns, period 04.01.2000 - 29.12.2003 (1003 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0.028743 12.482 11.07 
10 0 0.19802 13.481 18.307 
15 0 0.45209 14.991 24.996 
20 0 0.66683 16.786 31.41 

 
Table 98 - ARCH test for mean adjusted VILSE index daily log returns, period 

04.01.2000 - 29.12.2003 (1003 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0.044145 11.392 11.07 
10 0 0.28124 12.057 18.307 
15 0 0.59921 13.04 24.996 
20 0 0.81555 14.289 31.41 

 
Sample autocorrelation and sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is some 
autocorrelation and ARCH effects present in VILSE daily log returns, meaning that 
the returns on VILSE index are not IID.  
 
Since the employed tests discovered significant autocorrelation and 
heteroskedasticity in the VILSE daily returns it is necessary to model the data in 
order to obtain independently and identically distributed returns. Because 
autocorrelation has been detected in both returns and squared returns, VILSE index 
returns will be modelled as an ARMA-GARCH process in order to deal with both 
types of dependence. Estimated ARMA-GARCH parameters for VILSE index are 
given in table 99. 
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Table 99 - Estimated ARMA-GARCH parameters for VILSE index daily log 
returns, period 04.01.2000 - 29.12.2003 (1003 observations) 

 

 
 
According to their t statistics all of the estimated parameters are statistically 
significant, except the mean drift that is statistically insignificant and will be 
assumed to equal zero. The obtained model is a normally distributed ARMA(2,1)-
GARCH(1,1) model: 
 

ttttt rrr εε +−−= −−− 121 96844.008366.00805.1  

 
2

1
2

1
2 55848.025825.00531.1 −− ++−= ttt E σεσ  

 
Similarly to SBI20 and SKSM index, although more pronounced, the conditional 
volatility model for VILSE index is far from being integrated and places unusually 
little importance on past conditional volatility, but places a lot of weight on previous 
period residual. The plot of fitted ARMA-GARCH model innovations, conditional 
standard deviations and observed VILSE index daily log returns are given in figure 
112.  
 
 
 
 
 
 
 
 
 

Mean: ARMA(2,1) 

Variance: GARCH(1,1)

  Conditional Probability Distribution: Gaussian

C 1.19E-06 6.87E-06 0.1725

AR(1) 1.08050 0.039787 27.1573

AR(2) -0.08366 0.037544 -2.2284

MA(1) -0.96844 0.011306 -85.6547

K 1.31E-05 2.10E-06 6.2469

GARCH(1) 0.55848 0.054464 10.254

ARCH(1) 0.25825 0.037792 6.8336

Parameter Value  
Standard 

error
T statistic 
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Figure 112 - Plot of fitted ARMA-GARCH model innovations, conditional standard 
deviations and observed VILSE index daily log returns, period 
04.01.2000 - 29.12.2003 

 
 
If the fitted ARMA-GARCH model is appropriate for describing the dynamics of 
underlying data generating process the standardised innovation from such ARMA-
GARCH model should be independently and identically distributed (Figure 113). 
The adequacy of fitted ARMA-GARCH model can be statistically tested in the same 
manner as returns and squared returns.  
 
Figure 113 - Standardised innovations from fitted ARMA- GARCH model for 

VILSE index daily log returns, period 04.01.2000 - 29.12.2003 

 
 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic of standardised innovation detect no presence of autocorrelation in the 
standardised innovations from fitted ARMA-GARCH model, meaning that the 
conditional mean model (ARMA(2,1)) successfully captured the structure present in 
VILSE returns (Figure 114, Table 100).  
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Figure 114 - Sample autocorrelation and sample partial correlation function of 
standardized innovations from VILSE index daily log returns, period 
04.01.2000 - 29.12.2003 
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Table 100 - Ljung-Box-Pierce Q-test for standardised innovations from VILSE 

index daily log returns, period 04.01.2000 - 29.12.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.18318 7.5447 11.07 
10 0 0.38686 10.632 18.307 
15 0 0.40118 15.716 24.996 
20 0 0.45764 20.005 31.41 

 
Sample autocorrelation and sample partial correlation function, Ljung-Box Q-
statistic of squared standardised innovation and ARCH test of standardised 
innovations detect no presence of autocorrelation in the squared standardised 
innovations from fitted ARMA-GARCH model. This indicates that the conditional 
variance model (GARCH(1,1)) successfully captured the heteroskedasticity present 
in VILSE returns (Figure 115, Tables 101, 102). 
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Figure 115 - Sample autocorrelation and sample partial correlation function of 
squared standardized innovations from VILSE index daily log returns, 
period 04.01.2000 - 29.12.2003 
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Table 101 - Ljung-Box-Pierce Q-test for squared standardised innovations from 

VILSE index daily log returns, period 04.01.2000 - 29.12.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.93683 1.2814 11.07 
10 0 0.95183 3.8981 18.307 
15 0 0.97934 6.0242 24.996 
20 0 0.99561 7.2933 31.41 

 
Table 102 - ARCH test for standardised innovations from VILSE index daily log 

returns, period 04.01.2000 - 29.12.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.93793 1.2706 11.07 
10 0 0.95734 3.7647 18.307 
15 0 0.98051 5.954 24.996 

20 0 0.99592 7.2139 31.41 
 
Findings of the performed tests imply that the fitted ARMA(2,1)-GARCH(1,1) 
model adequately describes the dynamics of VILSE index daily returns. 
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6.3.11 Cyprus – CYSMGENL index 
 
Trading on the Cyprus Stock Exchange (CSE) started in 1996. The CYSMGENL 
index was launched in 1997 with the initial value of 1000 points. 
 
The analysis of the CYSMGENL stock index is performed for the period 04.01.2000 
– 31.12.2005. In this observation period the obtained sample from CYSMGENL 
index consists of 1510 daily index value observations. The evolution of index values 
and returns is displayed in Figures 116, 117 and 118. 
 
Figure 116 - Daily values of CYSMGENL index, period 04.01.2000 - 31.12.2005 

(1510 observations) 

 
Figure 117 - Daily log returns of CYSMGENL index, period 04.01.2000 - 

31.12.2005 (1509 observations) 
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Figure 118 - Histogram of daily log returns of CYSMGENL index, period 
04.01.2000 - 31.12.2005 (1509 observations) 
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From figures 116, 117 and 118 it is visible that there is significant volatility 
clustering and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. 
 
Basic descriptive statistics for CYSMGENL index in the period 04.01.2000 - 
31.12.2005 are presented in table 103. 
 
Table 103 - Basic statistics for CYSMGENL index daily log returns, period 

04.01.2000 - 31.12.2005 (1509 observations) 
Mean -0.00123 
Median -0.00108 
Minimum -0.09877 
Maximum 0.074742 
Standard deviation 0.015849 
Skewness -0.28268 
Kurtosis 7.8347 
 
Mean and median of daily returns are similar and differ significantly from zero. 
Mean and median show a very strong negative trend as opposed to CEEC, Baltic and 
Croatian indexes. Skewness and excess kurtosis are different from zero. In the 
observed period CYSMGENL index experienced extreme daily returns. The highest 
daily gain in the analysed period was 7,47%, while the highest daily loss amounted 
to – 9,88%. Asymmetry is slightly negative (-0,2827), meaning that the distribution 
slopes slightly to the left and negative returns are expected to occur more frequently 
than positive. Excess kurtosis of 7,83 indicates that the empirical probability 
distribution of CYSMGENL index has fatter tails than assumed under normal 
distribution. Excess kurtosis is similar to excess kurtosis of TALSE and SKSM 
index.  
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By observing the graphical representation of evolution of CYSMGENL index daily 
values (Figure 115) and knowing the first four moments of CYSMGENL index, it 
can be concluded that CYSMGENL index has almost noting in common with other 
analysed indexes (CEEC, Baltic countries and Croatia).  
 
During the entire observation period the value of index declined sharply as opposed 
to other indexes. The fact that the skewness of returns is negative, mean and median 
are significantly negative and kurtosis of the index being higher than normal can 
help explain the declining trend of CYSMGENL index values. To determine if the 
daily returns of CYSMGENL index are normally distributed, normality of empirical 
distribution is tested by Jarque-Bera test and Lilliefors test. Normality tests for the 
CYSMGENL index are presented in table 104. 
 
Table 104 - Normality tests for CYSMGENL index daily log returns, period 

04.01.2000 - 31.12.2005 (1509 observations) 
Jarque-Bera test 1,483.4 
(p value) 0 
Lilliefors test 0.084385 

(p value) 0 
 
Both normality tests show that the hypothesis of normality of returns for 
CYSMGENL index, for the entire analysed period, should be rejected at 5% 
significance level. Probability values of distribution of returns being normal, 
according to both normality tests are zero, strongly indicating that there is no 
possibility that the returns on this index are normally distributed. The distribution of 
CYSMGENL index returns is leptokurtotic and slightly asymmetrical i.e. it skews 
slightly to the left, as can be seen from figures 118 and 119, as well as from table 
105.  
 
Figure 119 and table 105 show that the true empirical distribution of CYSMGENL 
index daily returns is far better approximated by a Student’s t distribution with 2,75 
degrees of freedom, than it is by normal distribution. 
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Figure 119 - Probability plot for CYSMGENL index daily log returns, period 
04.01.2000 - 31.12.2005. (1509 observations) 
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Table 105 - Parameters of fitted Normal and Students' T distribution to 

CYSMGENL index daily log returns, period 04.01.2000 - 31.12.2005. 
(1509 observations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Presence of autocorrelation in CYSMGENL daily log returns is tested by examining 
its sample autocorrelation, sample partial correlation function (Figure 120) and 
calculating Ljung-Box Q-statistic for mean adjusted CYSMGENL returns (Table 
106).  
  

Distribution:    Normal Distribution:    t location-scale

Log likelihood:  4113.59 Log likelihood:  4270.95

Mean:            -0.00123 Mean:            -0.00127

Variance:        2.51E-04 Variance:        3.44E-04

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         -0.00123 0.000408 mu         -0.00127 0.000306

sigma      0.015849 0.000289 sigma       0.009679 0.000359

df           2.74813 0.243471

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     1.66E-07 -1.84E-23 mu     9.38E-08 2.40E-09 1.68E-06

sigma  -1.84E-23 8.33E-08 sigma  2.40E-09 1.29E-07 6.06E-05

df     1.68E-06 6.06E-05 0.059278
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Figure 120 - Sample autocorrelation and sample partial correlation function of 
CYSMGENL index daily log returns, period 04.01.2000 - 12.01.2004 
(1009 observations) 
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Table 106 - Ljung-Box-Pierce Q-test for mean adjusted CYSMGENL index daily 

log returns, period 04.01.2000 - 12.01.2004 (1009 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 6.17E-06 31.916 11.07 
10 1 2.64E-06 44.535 18.307 
15 1 5.00E-06 52.318 24.996 
20 1 1.67E-05 57.582 31.41 

 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic found the presence of autocorrelation in the CYSMGENL daily log returns 
meaning that the Cyprus stock market is not very efficient since the direction of the 
market can be predicted. To extract the autocorrelation from the data it will be 
necessary to use an ARMA (p, q) model. 
 
After the presence of autocorrelation in the daily log returns has been investigated it 
is necessary to test the squared log returns for presence of autocorrelation i.e. 
heteroskedasticity. Presence of heteroskedasticity in CYSMGENL returns is tested 
by examining its sample autocorrelation and sample partial correlation function of 
squared returns (Figure 121), calculating Ljung-Box Q-statistic for mean adjusted 
squared CYSMGENL returns (Table 107) and ARCH test for mean adjusted 
CYSMGENL returns (Table 108). 
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Figure 121 - Sample autocorrelation and sample partial correlation function of 
squared CYSMGENL index daily log returns, period 04.01.2000 - 
12.01.2004 (1009 observations) 
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Table 107 - Ljung-Box-Pierce Q-test for mean adjusted squared CYSMGENL index 

daily log returns, period 04.01.2000 - 12.01.2004 (1009 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 387.42 11.07 
10 1 0 488.33 18.307 
15 1 0 581.85 24.996 
20 1 0 646.6 31.41 

 
Table 108 - ARCH test for mean adjusted CYSMGENL index daily log returns, 

period 04.01.2000 - 12.01.2004 (1009 observations) 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 233.48 11.07 
10 1 0 260.67 18.307 
15 1 0 272.86 24.996 
20 1 0 285.34 31.41 

 
Sample autocorrelation and sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is 
significant autocorrelation and ARCH effects present in CYSMGENL daily log 
returns, meaning that the returns on CYSMGENL index are not IID.  
 
Since the employed tests discovered significant autocorrelation and 
heteroskedasticity in the CYSMGENL daily returns it is necessary to model the data 
in order to obtain independently and identically distributed returns. Because 
autocorrelation has been detected in both returns and squared returns, CYSMGENL 
index returns will be modelled as an ARMA-GARCH process in order to deal with 
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both types of dependence. Estimated ARMA-GARCH parameters for CYSMGENL 
index are given in table 109. 
 
Table 109 - Estimated ARMA-GARCH parameters for CYSMGENL index daily log 

returns, period 04.01.2000 - 12.01.2004 (1009 observations) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to their t statistics all of the estimated parameters are statistically 
significant. The obtained model is a normally distributed AR(1)-GARCH(1,1) 
model: 
 

ttt rr ε++−= −113.000135.0  

 
2

1
2

1
2 79835.019802.00604.6 −− ++−= ttt E σεσ  

 
Conditional volatility model for CYSMGENL index is very close to being 
integrated. The plot of fitted AR-GARCH model innovations, conditional standard 
deviations and observed CYSMGENL index daily log returns are given in figure 
122.  
 
 
 
 
 
 
 
 
 
 
 

Mean: 

Variance: 

C -1.35E-03 0.000384 -3.518

AR(1) 1.30E-01 0.032421 4.0209

K 6.04E-06 1.80E-06 3.3528

GARCH(1) 0.79835 0.018353 43.4985

ARCH(1) 0.19802 0.024501 8.0821

ARMA(1,0) 

GARCH(1,1)

  Conditional Probability Distribution: Gaussian

Parameter Value  

Standard 

error T statistic 
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Figure 122 - Plot of fitted AR-GARCH model innovations, conditional standard 
deviations and observed CYSMGENL index daily log returns, period 
04.01.2000 - 12.01.2004 

 
 

If the fitted AR-GARCH model is appropriate for describing the dynamics of 
underlying data generating process the standardised innovation from such AR-
GARCH model should be independently and identically distributed (Figure 123). 
The adequacy of fitted AR-GARCH model can be statistically tested in the same 
manner as returns and squared returns.  
 
Figure 123 - Standardised innovations from fitted AR-GARCH model for 

CYSMGENL index daily log returns, period 04.01.2000 - 12.01.2004 

 
 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic of standardised innovation detect no presence of autocorrelation in the 
standardised innovations from fitted AR-GARCH model, meaning that the 
conditional mean model (AR(1)) successfully captured the autocorrelation present in 
CYSMGENL returns (Figure 124, Table 110).  
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Figure 124 - Sample autocorrelation and sample partial correlation function of 
standardized innovations from CYSMGENL index daily log returns, 
period 04.01.2000 - 12.01.2004 
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Table 110 - Ljung-Box-Pierce Q-test for standardised innovations from 

CYSMGENL index daily log returns, period 04.01.2000 - 12.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.12773 8.5649 11.07 
10 0 0.1564 14.379 18.307 
15 0 0.16928 20.07 24.996 

20 0 0.13642 26.959 31.41 
 
Sample autocorrelation and sample partial correlation function, Ljung-Box Q-
statistic of squared standardised innovation and ARCH test of standardised 
innovations detect no presence of autocorrelation in the squared standardised 
innovations from fitted AR-GARCH model. This indicates that the conditional 
variance model (GARCH(1,1)) successfully captured the heteroskedasticity present 
in CYSMGENL returns (Figure 125, Tables 111, 112). 
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Figure 125 - Sample autocorrelation and sample partial correlation function of 
squared standardized innovations from CYSMGENL index daily log 
returns, period 04.01.2000 - 12.01.2004 
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Table 111 - Ljung-Box-Pierce Q-test for squared standardised innovations from 

CYSMGENL index daily log returns, period 04.01.2000 - 12.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.70052 2.9965 11.07 
10 0 0.092424 16.26 18.307 
15 0 0.2025 19.253 24.996 
20 0 0.055892 30.947 31.41 

 
Table 112 - ARCH test for standardised innovations from CYSMGENL index daily 

log returns, period 04.01.2000 - 12.01.2004 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.73516 2.7715 11.07 
10 0 0.15003 14.533 18.307 
15 0 0.31102 17.132 24.996 

20 0 0.088025 28.987 31.41 
 
Findings of the performed tests imply that the fitted AR(1)-GARCH(1,1) model 
adequately describes the dynamics of CYSMGENL index daily returns. 
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6.3.12 Malta – MALTEX index 
 
Trading on the Malta Stock Exchange (MSE) started in 1991. The MALTEX index 
was launched in 1995 with the value of 1000 points. 
 
The analysis of the MALTEX stock index is performed for period 03.01.2000 – 
31.12.2005. In this observation period the obtained sample from MALTEX index 
consists of 1480 daily index value observations. The evolution of index values and 
returns is displayed in Figures 126, 127 and 128. 
 
Figure 126 - Daily values of MALTEX index, period 03.01.2000 - 31.12.2005 (1480 

observations) 

 
Figure 127 - Daily log returns of MALTEX index, period 03.01.2000 - 31.12.2005 

(1479 observations) 
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Figure 128 - Histogram of daily log returns of MALTEX index, period 03.01.2000 - 
31.12.2005 (1479 observations) 
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From figures 126, 127 and 128 it is visible that there is significant volatility 
clustering and presence of extreme positive and negative returns, which motivates a 
conditional volatility model that accounts for time varying volatility. 
 
Basic descriptive statistics for MALTEX index in the period 03.01.2000 - 
31.12.2005 are presented in table 113. 
 
Table 113 - Basic statistics for MALTEX index daily log returns, period 03.01.2000 

- 31.12.2005 (1479 observations) 
Mean 0.000285 
Median 0 
Minimum -0.04189 
Maximum 0.060972 
Standard deviation 0.007483 
Skewness 0.90336 
Kurtosis 11.149 
 
Mean and median of daily returns are similar and close to zero. Skewness and excess 
kurtosis of the index are significantly different from zero assumed under normality. 
In the observed period MALTEX index experienced extreme daily returns. The 
highest daily gain in the analysed period was 6,1%, while the highest daily loss 
amounted to – 4,2%. Asymmetry is significantly positive (0,90336), as opposed to 
CYSMGENL index, meaning that the distribution slopes to the right and positive 
returns are expected to occur more frequently than negative ones. Excess kurtosis of 
11,149 indicates that the empirical probability distribution of MALTEX index has 
significantly fatter tails than assumed under normal distribution. The value of excess 
kurtosis is close to the value found for CYSMGENL index.  
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From graphical representation of evolution of MALTEX index daily values (Figure 
126) and knowing the first four moments of MALTEX index, it can be concluded 
that in the long run MALTEX index did not experience a strong trend of any 
direction but after a drift that occurred during the observation period, slightly 
surpassed its starting values. To determine if the daily returns of MALTEX index 
are normally distributed, normality of empirical distribution is tested by Jarque-Bera 
test and Lilliefors test. Normality tests for the MALTEX index are presented in table 
114. 
 
Table 114 - Normality tests for MALTEX index daily log returns, period 03.01.2000 

- 31.12.2005 (1479 observations) 
Jarque-Bera test 4,278.2 
(p value) 0 
Lilliefors test 0.11459 

(p value) 0 
 
Both normality tests show that the hypothesis of normality of returns for MALTEX 
index, for the entire analysed period, should be rejected at 5% significance level. 
Probability values of distribution of returns being normal, according to both 
normality tests are zero, strongly indicating that there is no possibility that the 
returns on this index are normally distributed. The distribution of MALTEX index 
returns is leptokurtotic and asymmetrical i.e. it skews to the right, as can be seen 
from figures 128 and 129, as well as from table 115. Figure 129 and table 115 show 
that the true empirical distribution of MALTEX index daily returns is far better 
approximated by a Student’s t distribution with 2,04 degrees of freedom, than it is 
by normal distribution. 
 
Figure 129 - Probability plot for MALTEX index daily log returns, period 

03.01.2000 - 31.12.2005 (1479 observations) 
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Table 115 - Parameters of fitted Normal and Students' T distribution to MALTEX 
index daily log returns, period 03.01.2000 - 31.12.2005 (1479 
observations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Presence of autocorrelation in MALTEX daily log returns is tested by examining its 
sample autocorrelation, sample partial correlation function (Figure 130) and 
calculating Ljung-Box Q-statistic for mean adjusted MALTEX returns (Table 116).  
  
Figure 130 - Sample autocorrelation and sample partial correlation function of 

MALTEX index daily log returns, period 03.01.2000 - 18.12.2003 (979 
observations) 
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Table 116 - Ljung-Box-Pierce Q-test for mean adjusted MALTEX index daily log 
returns, period 03.01.2000 - 18.12.2003 (979 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 257.38 11.07 
10 1 0 258.61 18.307 
15 1 0 264.35 24.996 
20 1 0 277.57 31.41 

Distribution:    Normal Distribution:    t location-scale

Log likelihood:  5141.71 Log likelihood:  5411.64

Mean:            0.000285 Mean:            -7.01E-05

Variance:        5.60E-05 Variance:        7.38E-04

Parameter  Estimate Std. Err.  Parameter  Estimate Std. Err.  

mu         0.000285 0.000195 mu         -7.01E-05 0.000121

sigma      0.007483 0.000138 sigma       0.003665 0.000149

df           2.03706 0.151887

Estimated covariance of parameter estimates: Estimated covariance of parameter estimates:

mu sigma  mu sigma  df

mu     3.79E-08 -3.80E-24 mu     1.46E-08 6.53E-10 6.55E-07

sigma  -3.80E-24 1.90E-08 sigma  6.53E-10 2.22E-08 1.55E-05

df     6.55E-07 1.55E-05 0.02307
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Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic found the presence of autocorrelation in the MALTEX daily log returns 
meaning that the stock market in Malta is not very efficient since the direction of the 
market can be predicted. To extract the autocorrelation from the data it will be 
necessary to use an ARMA (p, q) model. 
 

After the presence of autocorrelation in the daily log returns has been investigated it 
is necessary to test the squared log returns for presence of autocorrelation i.e. 
heteroskedasticity. Presence of heteroskedasticity in MALTEX returns is tested by 
examining its sample autocorrelation and sample partial correlation function of 
squared returns (Figure 131), calculating Ljung-Box Q-statistic for mean adjusted 
squared MALTEX returns (Table 117) and ARCH test for mean adjusted MALTEX 
returns (Table 118). 
 
Figure 131 - Sample autocorrelation and sample partial correlation function of 

squared MALTEX index daily log returns, period 03.01.2000 - 
18.12.2003 (979 observations) 
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Table 117 - Ljung-Box-Pierce Q-test for mean adjusted squared MALTEX index 
daily log returns, period 03.01.2000 - 18.12.2003 (979 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 348.59 11.07 
10 1 0 359.69 18.307 
15 1 0 362.68 24.996 
20 1 0 367.72 31.41 

 

Table 118 - ARCH test for mean adjusted MALTEX index daily log returns, period 
03.01.2000 - 18.12.2003 (979 observations) 

Period 
(days) 

H p-value Statistic 
Critical 
value 

5 1 0 158.43 11.07 
10 1 0 168.72 18.307 
15 1 0 174.29 24.996 
20 1 0 175.17 31.41 
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Sample autocorrelation and sample partial correlation function of squared returns, as 
well as the Ljung-Box Q-statistic and Engle’s ARCH test confirm that there is 
significant autocorrelation and ARCH effects present in MALTEX daily log returns, 
meaning that the returns on MALTEX index are not IID.  
 
Since the employed tests discovered significant autocorrelation and 
heteroskedasticity in the MALTEX daily returns it is necessary to model the data in 
order to obtain independently and identically distributed returns. Because 
autocorrelation has been detected in both returns and squared returns, MALTEX 
index returns will be modelled as an ARMA-GARCH process in order to deal with 
both types of dependence. Estimated ARMA-GARCH parameters for MALTEX 
index are given in table 119. 
 
Table 119 - Estimated ARMA-GARCH parameters for MALTEX index daily log 

returns, period 03.01.2000 - 18.12.2003 (979 observations) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to their t statistics all of the estimated parameters are statistically 
significant. The obtained model is a normally distributed AR(1)-GARCH(1,1) 
model: 
 

ttt rr ε++−= −1275.0000536.0  
 

2
1

2
1

2 64587.018561.00671.6 −− ++−= ttt E σεσ  
 
When modelling the mean process as an AR(1) process the constant term is 
significant and negative. The value of the constant drift from AR(1) model can 
explain some similarities between MALTEX and CYSMGENL index. Unlike 
CYSMGENL index, conditional volatility model for MALTEX index is far from 
being integrated and similar to SBI20 and SKSM index. It places unusually little 
importance on past conditional volatility, but places a lot of weight on previous 
period’s residual. The plot of fitted AR-GARCH model innovations, conditional 
standard deviations and observed MALTEX index daily log returns are given in 
figure 132.  

Mean: 

Variance: 

C -5.36E-04 0.0002 -2.676

AR(1) 2.75E-01 0.029654 9.2824

K 6.71E-06 1.04E-06 6.434

GARCH(1) 0.64587 0.045722 14.1259

ARCH(1) 0.18561 0.027638 6.7156

ARMA(1,0) 

GARCH(1,1)

  Conditional Probability Distribution: Gaussian

Parameter Value  

Standard 

error T statistic 
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Figure 132 - Plot of fitted AR-GARCH model innovations, conditional standard 
deviations and observed MALTEX index daily log returns, period 
03.01.2000 - 18.12.2003 

 
 
If the fitted AR-GARCH model is appropriate for describing the dynamics of 
underlying data generating process the standardised innovation from such AR-
GARCH model should be independently and identically distributed (Figure 133). 
The adequacy of fitted AR-GARCH model can be statistically tested in the same 
manner as returns and squared returns.  
 
Figure 133 - Standardised innovations from fitted AR-GARCH model for MALTEX 

index daily log returns, period 03.01.2000 - 18.12.2003 

 
 
Sample autocorrelation, sample partial correlation function and Ljung-Box Q-
statistic of standardised innovation detect no presence of autocorrelation in the 
standardised innovations from fitted AR-GARCH model meaning that the 
conditional mean model (AR(1)) successfully captured the autocorrelation present in 
MALTEX returns (Figure 134, Table 120).  



Chapter 6 Measuring market risk in transition countries   313 

 

Figure 134 - Sample autocorrelation and sample partial correlation function of 
standardized innovations from MALTEX index daily log returns, period 
03.01.2000 - 18.12.2003 
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Table 120 - Ljung-Box-Pierce Q-test for standardised innovations from MALTEX 

index daily log returns, period 03.01.2000 - 18.12.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.24563 6.679 11.07 

10 0 0.63465 7.9405 18.307 

15 0 0.20429 19.212 24.996 

20 0 0.22266 24.465 31.41 
 
Sample autocorrelation and sample partial correlation function, Ljung-Box Q-
statistic of squared standardised innovation and ARCH test of standardised 
innovations detect no presence of autocorrelation in the squared standardised 
innovations from fitted AR-GARCH model. This indicates that the conditional 
variance model (GARCH(1,1)) successfully captured the heteroskedasticity present 
in MALTEX returns (Figure 135, Tables 121, 122). 
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Figure 135 - Sample autocorrelation and sample partial correlation function of 
squared standardized innovations from MALTEX index daily log 
returns, period 03.01.2000 - 18.12.2003 
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Table 121 - Ljung-Box-Pierce Q-test for squared standardised innovations from 

MALTEX index daily log returns, period 03.01.2000 - 18.12.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.97042 0.89729 11.07 
10 0 0.94952 3.9512 18.307 
15 0 0.73767 11.209 24.996 
20 0 0.93016 11.567 31.41 

 
Table 122 - ARCH test for standardised innovations from MALTEX index daily log 

returns, period 03.01.2000 - 18.12.2003 
Period 
(days) 

H p-value Statistic 
Critical 
value 

5 0 0.97694 0.80138 11.07 
10 0 0.94551 4.0404 18.307 
15 0 0.71799 11.479 24.996 

20 0 0.91821 11.937 31.41 
 
Findings of the performed tests imply that the fitted AR(1)-GARCH(1,1) model 
adequately describes the dynamics of MALTEX index daily returns. 
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6.3.13 Summary of findings 
 
From graphical representation of the realized returns of stock indexes from transition 
countries it can be concluded that volatility clustering and occurrence of extreme 
positive and negative returns is a common characteristic shared by all of the tested 
indexes. 
 

Overall basic statistics and normality test for daily log returns of all the tested 
indexes, in period 01.1.2000 - 31.12.2005. are presented in table 123. 
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From table 123 and individual statistical analyses of stock indexes from transition 
countries, performed in the previous chapters, it can be determined all of the indexes 
are characterised by having fatter tails than presumed under normal distribution. In 
the observed period, all of the tested indexes exhibit varying degrees of asymmetry, 
with seven indexes having negative skewness and five indexes having positive 
skewness. Due to pronounced leptokurtosis and asymmetry of empirical return 
distributions of stock indexes from transition countries it comes as no surprise that 
according to both Lilliefors and Jarque-Bera test of normality none of the tested 
indexes is normally distributed. The results from normality tests are also confirmed 
by the histograms and probability plots of tested indexes.  
 
By examining the sample autocorrelation functions, sample partial autocorrelation 
functions of mean adjusted returns and by calculating the Ljung-Box Q-statistics for 
mean adjusted returns it can be concluded that in eight out of twelve tested stock 
indexes autocorrelation in the returns of stock indexes was detected. Sample 
autocorrelation functions, sample partial autocorrelation functions of squared mean 
adjusted returns, Ljung-Box Q-statistics for squared mean adjusted returns and 
Engle’s ARCH tests all detected significant heteroskedasticity in all of the tested 
stock indexes.  
 
Since autocorrelation in returns was detected for most of the stock indexes from 
transition countries, and presence of heteroskedasticity was discovered in all of the 
stock indexes, the return and volatility processes of tested indexes are modelled as 
ARMA-GARCH processes. After estimating the parameters of ARMA-GARCH 
processes and fitting the models, the innovations (residuals) from the process are 
obtained. Through analysis of sample autocorrelation functions and sample partial 
autocorrelation functions of standardised innovations as well as calculating the 
Ljung-Box Q-statistics for standardised innovations it can be concluded that the 
ARMA process used to model the conditional mean captured the autocorrelation 
present in the mean adjusted returns of the analysed stock indexes. Likewise, sample 
autocorrelation functions, sample partial autocorrelation functions of squared 
standardised innovations as well as Ljung-Box Q-statistics and ARCH tests confirm 
that GARCH conditional volatility process captured the heteroskedasticity present in 
the mean adjusted squared returns of the analysed stock indexes. This means that 
after fitting ARMA-GARCH models to stock indexes from transition countries, 
which are not identically and independently distributed, obtained standardised 
innovations are identically and independently distributed. The importance and 
implications of these findings are explained and discussed in Chapter 6.5. 
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6.4 Backtesting results 
 
In this chapter the backtesting results for twelve analysed VaR are presented and 
their performance according to different criteria is analysed. The calculated VaR 
figures are for a one-day ahead horizon and 95 and 99 percent confidence level, i.e. 
the five and one percent lower tail of the return distribution. The performance of 
twelve VaR models is tested on 500 out-of-the-sample daily return observations. 
The reported VaR figures from each VaR model are compared with the realized 
changes in index values. Twelve VaR models are analysed across twelve indexes 
from transition countries. Performance of each VaR model will be evaluated based 
on seven criterions – tests. 
 
First test is the Kupiec test, a simple expansion of the failure rate, which is 
prescribed by the Basel Committee on Banking Supervision. The set-up for this test 
is the classic framework for a sequence of successes and failures, also known as 
Bernoulli trials. Since a good risk measurement should secure that VaR exceedences 
are independent through time, since any clustering of VaR failures could easily force 
a bank into bankruptcy the Christoffersen independence test is calculated. It tests 
whether VaR exceedences are IID. Results of Christoffersen unconditional test (UC) 
are also reported but in the author’s opinion they provide a somewhat distorted 
image of the relative performance of VaR models. Since Christoffersen 
unconditional test is distributed as chi-square with one degree of freedom, deviations 
from the expected value of the test that occur on the conservative side (i.e. number 
of exceedences is lower than the excepted value) are treated more severely, a 
characteristic that is not compatible with regulators desire to increase the safety of 
the banking sector.  From the regulatory standpoint Kupiec binomial test is preferred 
to Christoffersen unconditional test because it is more desirable to have positive than 
negative deviations. The same logic extends to the Christoffersen conditional 
coverage (CC) test, which also should be considered with a serious reserve since it 
automatically puts in a disadvantage VaR models that report a lower number of VaR 
exceedences per confidence level than expected.    
 
Furthermore, two forecast evaluation approaches are used to evaluate the relative 
performance of tested VaR models. This approach allows for ranking of different 
competing models, but does not give any formal statistical indication of model 
adequacy. In ranking them, it takes account of any particular concerns one might 
have. For example, higher losses can be given greater weight because of concern 
about higher losses. Furthermore, because they are not statistical tests, forecast 
evaluation approaches do not suffer from the low power of standard tests such as the 
Kupiec test. This makes forecast evaluation approach very attractive for backtesting 
with the small data sets typically available in practice. The first forecast evaluation 
approach is the Lopez size-adjusted loss function (1998). Second is the Blanco-Ihle 
(1998) loss function that gives each tail-loss observation a weight equal to the tail 
loss divided by the VaR. The loss function ensures that higher tail losses get 
awarded higher values without the impaired intuition introduced by squaring the tail 
loss. Blanco-Ihle is an excellent test for comparing competing VaR models that 
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report the same frequency of tail losses, and whose tail losses are IID. Ranking VaR 
models by Blanco-Ihle approach is one of the best approaches to distinguish 
between such VaR tests. 
 
Forecasting performance of VaR models is also evaluated by two statistical loss 
functions. First measure of forecasting performance of the tested VaR models is the 
root mean squared error (RMSE) measure, which examines the degree to which the 
VaR forecasts tend to vary around the realized returns for a given date. Smaller 
deviations from the expected value indicate better VaR measure. Second measure of 
forecasting performance of the tested VaR models is the mean absolute percentage 
error measure (MAPE) for measuring bunching proposed by Boudoukh, Richardson, 
and Whitelaw (1998). MAPE is a combined measure of both bias and bunching. 
Smaller deviations from the expected value indicate better VaR measure. Size of tail 
loss test is not calculated directly but it is used indirectly through Lopez size 
adjusted test and Blanco-Ihle test. Crnkovic-Drachman test is not used in the 
evaluation of VaR models because Kuiper's test statistic that it uses is very data-
intensive - results begin to deteriorate with less than 1,000 observations. 
Furthermore, the statistic assumes that the parameters of the distributions are known, 
which is a very unrealistic assumption. Performance of each VaR model is evaluated 
for each individual index, based on every performance test. The summary of VaR 
models performance is presented in backtesting tables in tables 124-147. 
Significance level for VaR model acceptance is set at 10% to secure a more rigorous 
backtesting criterion.  
 
The first row of backtesting tables reports the actual rates at which violations 
occurred for the twelve stock indexes. Second row reports the p value for Kupiec 
test of a particular VaR model. Third row reports the p value for Christoffersen 
unconditional coverage test. Fourth row reports the p value for Christoffersen 
independence test. Fifth row reports the p value for Christoffersen conditional 
coverage test. Sixth row reports the score of the Lopez size-adjusted loss function. 
Seventh row reports the score of the Blanco-Ihle loss function. Eighth and ninth row 
report the RMSE and MAPE values. Tenth row shows the value of average VaR 
according to each VaR model for the duration of the testing period. 
 
SBI20 index 
 
Performance of tested VaR models for Slovenian SBI20 index at 95 and 99% 
confidence level is given in tables 124 and 125. According to Kupiec test at 95% 
confidence level most of the tested VaR models did not pass the test. Historical 
simulation models with 50 and 100 day rolling window failed the test and reported 
the observed frequency of failures of 7% and 6,6% respectively. Historical 
simulation based on 250 and 500 day rolling window passed the Kupiec test, as well 
as both BRW models. Normal variance covariance and RiskMetrics VaR models 
both failed the Kupiec test with observed frequencies of failures of 6,2% and 6,6%. 
Similarly, both Normal Monte Carlo and EWMA Monte Carlo models also failed 
the test with frequencies of failures of 6,2% and 6,8%. GARCH-RiskMetrics model 
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and HHS model both passed the Kupiec test at 95% confidence level. With 
frequency of failure of 7% (40% more than expected) HS 50 is the model with 
highest reported frequency of failures. At 99% confidence level situation is similar, 
with historical simulation models with 50 and 100 day rolling window again failing 
the test with frequencies of failures of 3% and 1,8%. Historical simulation based on 
250 and 500 day rolling window and BRW model with λ = 0.99 passed the Kupiec 
test. BRW model with λ = 0.97, Normal variance covariance, RiskMetrics, Normal 
Monte Carlo and EWMA Monte Carlo VaR models as well as the GARCH-
RiskMetrics model all failed the Kupiec test at 99% confidence level, with 
RiskMetrics model having the highest frequency of failures of 3,6% - more than 
three times of expected frequency. HHS model successfully passed the Kupiec test 
at 99% confidence level. According to Christoffersen independence test at 95% 
confidence level all of the tested VaR models failed at 10% significance level except 
GARCH-RiskMetrics and HHS model. At 99% confidence level HS 50, HS 250, HS 
500, RiskMetrics and EWMA Monte Carlo VaR models failed the Christoffersen 
independence test. Based on Lopez test at 95% confidence level VaR model with the 
worst ranking based on underestimation of risk is the HS 50 model, and the worst 
ranking model based on overestimation of risk is the HS 500 model. The best ranked 
VaR model is the GARCH-RiskMetrics model. At 99% confidence level VaR model 
with the worst ranking based on underestimation of risk is the RiskMetrics model. 
None of the VaR models overestimated the risk at 99% confidence level. The best 
ranked VaR model is the HS 500 model. Based on Blanco-Ihle test at 95% 
confidence level the best ranking VaR model is the HS 500 model and the worst is 
the RiskMetrics model, meaning that it experienced the highest losses in excess of 
forecasted VaR. At 99% confidence level the best ranking VaR model is again the 
HS 500 model and the worst is again the RiskMetrics model. According to RMSE 
measure, at 95% confidence level, the best performing VaR model is Normal Monte 
Carlo and the worst ranked model is GARCH-RiskMetrics model. At 99% 
confidence level the best ranking VaR model is again the Normal Monte Carlo and 
the worst ranked model is the HS 500 model. According to MAPE measure, at 95% 
confidence level, the best performing VaR model is the HS 500 and the worst 
ranked model is the EWMA Monte Carlo model. At 99% confidence level the best 
ranking VaR model is the HS 500 model and the worst ranked model is the 
RiskMetrics model. In the analysed period, at 95% confidence level, VaR model 
with the lowest average VaR was the HS 50 model (0,763%), HS 500 model 
reported the highest average VaR of 0,95%. The difference between the lowest and 
the highest average VaR at 95% confidence level is 24,51%. At 99% confidence 
level, VaR model with the lowest average VaR was the RiskMetrics model 
(1,129%), HS 500 model again reported the highest average VaR of 1,716%. The 
difference between the lowest and the highest average VaR at 99% confidence level 
is 51,99%. 
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BUX index 
 
Performance of tested VaR models for Hungarian BUX index at 95 and 99% 
confidence level is given in tables 126 and 127. According to Kupiec test at 95% 
confidence level most of the tested VaR models passed the test. The only two VaR 
models that did not pass the test were the historical simulation models with 100 and 
250 day rolling window. Observed frequency of failures for the HS 100 model is 7% 
and 6,4% for HS 250 model. With frequency of failure of 7% (40% more than 
expected) HS 50 is the model with highest reported frequency of failures. At 99% 
confidence level situation is different with all of the historical simulation models 
(HS 50, 100, 250 and 500) failing the test with frequencies of failures ranging from 
3% for HS 50 to 2% for HS 500 model. BRW model with λ = 0.97 failed the Kupiec 
test at 99% confidence level with reported frequency of failures of 2,4%. Normal 
variance covariance and Normal Monte Carlo model also failed the test with 
frequency of failures of 2% and 1,8% respectively. BRW model with λ = 0.99, 
RiskMetrics, EWMA Monte Carlo, GARCH-RiskMetrics and HHS model all passed 
the test. With frequency of failure of 3% (three times more than expected) HS 50 is 
the model with highest reported frequency of failures. According to Christoffersen 
independence test both at 95% and 99% confidence level all of the tested VaR 
models passed the test at 10% significance level. Based on Lopez test at 95% 
confidence level VaR model with the worst ranking based on underestimation of risk 
is the HS 100 model, and the worst ranking model based on overestimation of risk is 
the GARCH-RiskMetrics model. The best ranked VaR model is the Normal 
variance-covariance model. At 99% confidence level VaR model with the worst 
ranking based on underestimation of risk is the HS 50 model, and the worst ranking 
model based on overestimation of risk is the HHS model. The best ranked VaR 
model is the RiskMetrics model. Based on Blanco-Ihle test at 95% confidence level 
the best ranking VaR model is the GARCH-RiskMetrics model and the worst is the 
HS 50 model, meaning that it experienced the highest losses in excess of forecasted 
VaR. At 99% confidence level the best ranking VaR model is the HHS model and 
the worst is again the HS 50 model. According to RMSE measure, at 95% 
confidence level, the best performing VaR model is HS 250 model and the worst 
ranked model is GARCH-RiskMetrics model. At 99% confidence level the best 
ranking VaR model is Normal Monte Carlo and the worst ranked model is the HHS 
model. According to MAPE measure, at 95% confidence level, the best performing 
VaR model is the BRW model with λ = 0.97 and the worst ranked model is the HS 
250 model. At 99% confidence level the best ranking VaR model is the RiskMetrics 
model and the worst ranked model is the HS 50 model. In the analysed period, at 
95% confidence level, VaR model with the lowest average VaR was the HS 250 
model (1,67%), HS 500 model reported the highest average VaR of 2,179%. The 
difference between the lowest and the highest average VaR at 95% confidence level 
is 30,48%. At 99% confidence level, VaR model with the lowest average VaR was 
the Normal Monte Carlo model (2,59%), HHS model reported the highest average 
VaR of 3,229%. The difference between the lowest and the highest average VaR at 
99% confidence level is 24,67%. 
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WIG20 index 
 
Performance of tested VaR models for Polish WIG20 index at 95 and 99% 
confidence level is given in tables 128 and 129. According to Kupiec test at 95% 
confidence level all of the tested VaR models passed the test. At 99% confidence 
level historical simulation models with 50 and 100 day rolling window failed the test 
and reported the observed frequency of failures of 2,8% and 2% respectively.  BRW 
model with λ = 0.97 failed the Kupiec test at 99% confidence level with reported 
frequency of failures of 2,4%. RiskMetrics, Normal Monte Carlo and EWMA Monte 
Carlo model also failed the test all with frequency of failures of 2%. HS 250, HS 
500, BRW model with λ = 0.99, Normal variance-covariance, GARCH-RiskMetrics 
and HHS model all passed the test. With frequency of failure of 2,8% (almost three 
times more than expected) HS 50 is the model with highest reported frequency of 
failures. According to Christoffersen independence test both at 95% and 99% 
confidence level all of the tested VaR models passed the test at 10% significance 
level. Based on Lopez test at 95% confidence level VaR model with the worst 
ranking based on underestimation of risk is the HS 50 model, and the worst ranking 
model based on overestimation of risk is the GARCH-RiskMetrics model. The best 
ranked VaR model is the HS 100 model. At 99% confidence level VaR model with 
the worst ranking based on underestimation of risk is the HS 50 model, and the 
worst ranked models based on overestimation of risk are the HS 500 and BRW 
model with λ = 0.99. The best ranked VaR model is the HS 250 model. Based on 
Blanco-Ihle test at 95% confidence level the best ranking VaR model is the 
GARCH-RiskMetrics model and the worst is the HS 50 model, meaning that it 
experienced the highest losses in excess of forecasted VaR. At 99% confidence level 
the best ranking VaR model is again the GARCH-RiskMetrics model and the worst 
is again the HS 50 model. According to RMSE measure, at 95% confidence level, 
the best performing VaR model is HS 50 model and the worst ranked model is 
GARCH-RiskMetrics model. At 99% confidence level the best ranking VaR model 
is EWMA Monte Carlo and the worst ranked model is the BRW model with λ = 
0.99. According to MAPE measure, at 95% confidence level, the best performing 
VaR model is the RiskMetrics model and the worst ranked models are GARCH-
RiskMetrics and HHS model. At 99% confidence level the best ranking VaR model 
is the HHS model and the worst ranked model is the HS 50 model. In the analysed 
period, at 95% confidence level, VaR model with the lowest average VaR was the 
HS 50 model (1,596%), GARCH-RiskMetrics model reported the highest average 
VaR of 2,124%. The difference between the lowest and the highest average VaR at 
95% confidence level is 33,08%. At 99% confidence level, VaR model with the 
lowest average VaR was the EWMA Monte Carlo model (2,386%), HS 500 model 
reported the highest average VaR of 3,032%. The difference between the lowest and 
the highest average VaR at 99% confidence level is 27,07%. 
 
 
 
 



Chapter 6 Measuring market risk in transition countries   325 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

H
S

 5
0

H
S

 1
0
0

H
S

 2
5

0
H

S
 5

0
0

B
R

W
 

λ
=

0
,9

7

B
R

W
 

λ
=

0
,9

9

N
o

rm
a
l 

V
C

V

R
is

k
 

M
e
tr

ic
s

N
o

rm
a

l 

M
C

E
W

M
A

 

M
C

G
A

R
C

H
 

R
M

H
H

S

N
u
m

b
e
r 

o
f 

fa
ilu

re
s

2
7

2
5

2
0

1
4

2
4

1
6

1
9

2
4

1
9

2
4

1
2

1
2

F
re

q
u

e
n
c
y 

o
f 

fa
ilu

re
s

0
.0

5
4

0
.0

5
0

.0
4

0
.0

2
8

0
.0

4
8

0
.0

3
2

0
.0

3
8

0
.0

4
8

0
.0

3
8

0
.0

4
8

0
.0

2
4

0
.0

2
4

K
u
p

ie
c
 t
e

st
 (

p
 v

a
lu

e
)

0
.2

9
6
1

2
0

.4
4

7
0

6
0

.8
2
1

1
5

0
.9

8
9

1
9

0
.5

2
8
6

5
0

.9
6
5

7
1

0
.8

7
2

7
7

0
.5

2
8
6

5
0

.8
7
2

7
7

0
.5

2
8
6

5
0

.9
9
7

3
9

0
.9

9
7

3
9

C
h
ri

s
to

ff
e

rs
e

n
 U

C
 t
e

s
t 
(p

 v
a

lu
e

)
0

.6
8

5
2

1
0

.2
8
8

4
8

0
.0

1
4

1
6
2

0
.8

3
6
3

9
0

.0
4

8
6

2
4

0
.1

9
9

3
9

0
.8

3
6
3

9
0

.1
9
9

3
9

0
.8

3
6
3

9
0

.0
0

3
1

1
8

0
.0

0
3

1
1
8

C
h
ri

s
to

ff
e

rs
e

n
 I
N

D
 t

e
s
t 

(p
 v

a
lu

e
)

0
.7

0
3
8

8
0

.4
8

0
9

2
0
.8

2
3

6
0
.3

6
8

6
1

0
.4

1
8

2
0

.5
3
1

0
6

0
.7

4
8

3
4

0
.9

1
4
3

3
0

.7
4
8

3
4

0
.9

1
4
3

3
0

.4
4
1

8
6

0
.4

4
1

8
6

C
h
ri

s
to

ff
e

rs
e

n
 C

C
 t
e

s
t 
(p

 v
a

lu
e

)
0

.8
5

6
9

3
0

.7
8

0
0

5
0

.5
5
5

3
3

0
.0

3
2

9
3
8

0
.7

0
5
3

9
0

.1
1
7

6
2

0
.4

1
6
9

0
.9

7
3
2

5
0

.4
1

6
9

0
.9

7
3
2

5
0

.0
0

9
4

2
5

0
.0

0
9

4
2
5

L
o
p

e
z 

te
st

2
.2

2
2
8

0
.1

9
3
2

8
-4

.8
4

0
6

-1
0

.8
9
1

-0
.8

1
7
6

6
-8

.8
5

1
7

-5
.8

4
7
1

-0
.8

3
0
9

6
-5

.8
4

8
8

-0
.8

2
8
3

2
-1

2
.9

0
3

-1
2

.8
8
7

B
la

n
co

-I
h

le
 t

e
s
t

1
7

1
4

1
0

5
1

3
9

9
1

0
.5

8
6

9
1

1
4
.5

4
1

4
5

.6
6

8
9

R
M

S
E

0
.0

1
5

1
0

1
0
.0

1
6

0
2

1
0

.0
1

7
4

3
8

0
.0

1
8

6
5
2

0
.0

1
6

5
7

6
0

.0
1
7

2
2

0
.0

1
6

9
4
7

0
.0

1
5

2
9

5
0

.0
1

6
8

5
9

0
.0

1
5

2
7

2
0

.0
1

9
3

0
3

0
.0

1
7

9
4
8

M
A

P
E

1
.0

0
5

1
.8

0
3

2
.0

4
4

9
2

.4
9

3
8

1
.7

3
0

7
2
.0

9
9

8
1

.9
5

5
1

0
.7

3
8
1

5
1

.9
5

5
1

0
.9

9
2
5

2
2
.7

2
3

2
2

.7
2

3
2

A
ve

ra
g

e
 V

a
R

-0
.0

1
5

9
6

1
-0

.0
1

7
1
5

3
-0

.0
1

8
7

9
2

-0
.0

2
0

6
4
2

-0
.0

1
7

5
2

3
-0

.0
1

8
7

5
9

-0
.0

1
8

5
3
6

-0
.0

1
6

6
6

5
-0

.0
1

8
4
7

-0
.0

1
6

6
3

4
-0

.0
2

1
2

3
8

-0
.0

1
9

8
4
2

A
cc

e
p

ta
n

ce
 (

K
u

p
ie

c 
te

st
)

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

C
h
ri

s
to

ff
e

rs
e

n
 I
N

D
 t

e
s
t

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

H
S

 5
0

H
S

 1
0
0

H
S

 2
5

0
H

S
 5

0
0

B
R

W
 

λ
=

0
,9

7

B
R

W
 

λ
=

0
,9

9

N
o

rm
a
l 

V
C

V

R
is

k
 

M
e
tr

ic
s

N
o

rm
a

l 

M
C

E
W

M
A

 

M
C

G
A

R
C

H
 

R
M

H
H

S

N
u
m

b
e
r 

o
f 

fa
ilu

re
s

1
4

1
0

5
4

9
4

6
1

0
1

0
1

0
5

6

F
re

q
u

e
n
c
y 

o
f 

fa
ilu

re
s

0
.0

2
8

0
.0

2
0

.0
1

0
.0

0
8

0
.0

1
8

0
.0

0
8

0
.0

1
2

0
.0

2
0

.0
2

0
.0

2
0

.0
1

0
.0

1
2

K
u
p

ie
c
 t
e

st
 (

p
 v

a
lu

e
)

0
.0

0
0

2
0

6
0
.0

1
3

2
4

4
0

.3
8
4

0
4

0
.5

6
0

3
9

0
.0

3
1

1
0

2
0

.5
6
0

3
9

0
.2

3
7

0
8

0
.0

1
3

2
4

4
0

.0
1

3
2

4
4

0
.0

1
3

2
4

4
0

.3
8
4

0
4

0
.2

3
7

0
8

C
h
ri

s
to

ff
e

rs
e

n
 U

C
 t
e

s
t 
(p

 v
a

lu
e

)
0
.0

0
0

9
1

4
0
.0

4
7

8
9

6
1

0
.6

4
1

4
3

0
.1

0
6
0

2
0

.6
4
1

4
3

0
.6

6
3

0
2

0
.0

4
7

8
9

6
0

.0
4

7
8

9
6

0
.0

4
7

8
9

6
1

0
.6

6
3

0
2

C
h
ri

s
to

ff
e

rs
e

n
 I
N

D
 t

e
s
t 

(p
 v

a
lu

e
)

0
.3

9
9
3

3
0

.1
8

5
7

3
0

.7
5
0

3
7

0
.7

9
9
3

0
.1

4
4
7

7
0
.7

9
9

3
0
.7

0
2

3
4

0
.5

2
2
4

6
0

.5
2
2

4
6

0
.5

2
2
4

6
0

.7
5
0

3
7

0
.7

0
2

3
4

C
h
ri

s
to

ff
e

rs
e

n
 C

C
 t
e

s
t 
(p

 v
a

lu
e

)
0
.0

0
2

8
7

4
0
.0

5
8

8
7

1
0

.9
5
0

6
5

0
.8

6
8
7

0
.0

9
3

5
2

5
0
.8

6
8

7
0
.8

4
5

3
8

0
.1

1
5
1

7
0

.1
1
5

1
7

0
.1

1
5
1

7
0

.9
5
0

6
5

0
.8

4
5

3
8

L
o
p

e
z 

te
st

9
.0

9
1
9

5
.0

8
6
3

0
.0

3
8
8

3
5

-0
.9

7
3

1
4

4
.0

6
2

2
-0

.9
7
3

4
1

1
.0

5
0
4

5
.0

6
4

6
5

.0
5

9
7

5
.0

7
1

7
0

.0
2

0
4

1
4

1
.0

2
2

B
la

n
co

-I
h

le
 t

e
s
t

5
.0

3
0
1

4
.9

0
4
5

1
.4

8
3

2
0
.9

1
8

1
4

3
.1

8
7

7
1
.0

3
5

2
2

.2
0
1

2
.8

3
7

1
2

.6
3

3
3

.1
7
9

3
0

.6
5
8

6
8

0
.7

1
7

4
3

R
M

S
E

0
.0

2
3

5
7

3
0
.0

2
5

3
6

9
0

.0
2

7
3

1
7

0
.0

2
8

5
1
9

0
.0

2
6

2
2

4
0

.0
2

8
7

3
1

0
.0

2
5

0
2
9

0
.0

2
2
4

5
0

.0
2

4
7

8
5

0
.0

2
2

3
8

4
0

.0
2

8
3

2
9

0
.0

2
7

9
4
7

M
A

P
E

1
.8

7
0
3

1
.2

2
9
4

0
.5

9
1

0
2

0
.7

0
5

7
4

0
.9

9
0
0

2
0

.7
0
5

7
4

1
1

.2
3
6

9
1

.4
3

3
9

1
.2

3
6

9
0

.4
6
1

3
5

0
.3

4
6

6
3

A
ve

ra
g

e
 V

a
R

-0
.0

2
4

2
9

2
-0

.0
2

6
2
8

7
-0

.0
2

9
0

7
9

-0
.0

3
0

3
2

-0
.0

2
7

2
7

3
-0

.0
3

0
2

9
7

-0
.0

2
6

6
1
8

-0
.0

2
3

9
8

2
-0

.0
2

6
3

1
4

-0
.0

2
3

8
6

1
-0

.0
3

0
0

3
7

-0
.0

2
9

6
7
1

A
cc

e
p

ta
n

ce
 (

K
u

p
ie

c 
te

st
)

N
O

N
O

Y
E

S
Y

E
S

N
O

Y
E

S
Y

E
S

N
O

N
O

N
O

Y
E

S
Y

E
S

C
h
ri

s
to

ff
e

rs
e

n
 I
N

D
 t

e
s
t

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

T
ab

le
 1

28
 -

 B
ac

kt
es

tin
g 

re
su

lts
 a

nd
 d

ia
gn

os
tic

s 
of

 5
00

 V
aR

 f
or

ec
as

ts
 f

or
 W

IG
20

 i
nd

ex
 d

ai
ly

 l
og

 r
et

ur
ns

, 
95

%
 c

on
fi

de
nc

e 
le

ve
l, 

pe
ri

od
 0

9.
01

.2
00

4 
-3

1.
12

.2
00

5 

T
ab

le
 1

29
 -

 B
ac

kt
es

tin
g 

re
su

lts
 a

nd
 d

ia
gn

os
tic

s 
of

 5
00

 V
aR

 f
or

ec
as

ts
 f

or
 W

IG
20

 i
nd

ex
 d

ai
ly

 l
og

 r
et

ur
ns

, 
99

%
 c

on
fi

de
nc

e 
le

ve
l, 

pe
ri

od
 0

9.
01

.2
00

4 
-3

1.
12

.2
00

5 



326   MARKET RISK IN TRANSITION COUNTRIES – VaR APPROACH 
 

 

PX50 index 
 
Performance of tested VaR models for Czech PX50 index at 95 and 99% confidence 
level is given in tables 130 and 131. According to Kupiec test at 95% confidence 
level all of the tested VaR models passed the test except HS 50 model with 
frequency of failures of 6,4%, which is 28% more than expected. At 99% confidence 
level historical simulation models HS 50, HS 100 and HS 250 failed the test with 
frequencies of failures ranging from 2,8% for HS 50 to 1,6% for HS 250 model. 
BRW model with λ = 0.97 failed the Kupiec test at 99% confidence level with 
reported frequency of failures of 1,8%. Normal variance covariance and RiskMetrics 
failed the test with reported frequency of failures of 2% and 1,6% respectively.  
Both Normal Monte Carlo and EWMA Monte Carlo failed the test with reported 
frequency of failures of 2% and 1,8% respectively. GARCH-RiskMetrics model also 
failed the test with frequency of failures of 1,6%. HS 500, BRW model with λ = 
0.99 and HHS are the only models that successfully passed the Kupiec test at 99% 
confidence level. With frequency of failure of 2,8% (almost three times more than 
expected) HS 50 is the model with highest reported frequency of failures. According 
to Christoffersen independence test at 95% confidence level HS 50, HS 250 and HS 
500 models failed the test at 10% significance level. At 99% confidence level all of 
the tested VaR models passed the Christoffersen independence test. Based on Lopez 
test at 95% confidence level VaR model with the worst ranking based on 
underestimation of risk is the HS 50 model, and the worst ranking model based on 
overestimation of risk is the GARCH-RiskMetrics model. The best ranked VaR 
model is the HS 100 model. At 99% confidence level VaR model with the worst 
ranking based on underestimation of risk is the HS 50 model. None of the VaR 
models overestimated the risk at 99% confidence level.  The best ranked VaR model 
is the BRW model with λ = 0.99. Based on Blanco-Ihle test at 95% confidence level 
the best ranking VaR model is the GARCH-RiskMetrics model and the worst is the 
HS 50 model, meaning that it experienced the highest losses in excess of forecasted 
VaR. At 99% confidence level the best ranking VaR model is the HHS model and 
the worst is again the HS 50 model. According to RMSE measure, at 95% 
confidence level, the best performing VaR model is HS 250 model and the worst 
ranked model is GARCH-RiskMetrics model. At 99% confidence level the best 
ranking VaR model is Normal Monte Carlo and the worst ranked model is the BRW 
model with λ = 0.99. According to MAPE measure, at 95% confidence level, the 
best performing VaR models are HS 100 and BRW model with λ = 0.97, and the 
worst ranked model is the HS 250 model. At 99% confidence level the best ranking 
VaR model is the BRW model with λ = 0.99 and the worst ranked model is the HS 
50 model. In the analysed period, at 95% confidence level, VaR model with the 
lowest average VaR was the HS 250 model (1,366%), GARCH-RiskMetrics model 
reported the highest average VaR of 1,823%. The difference between the lowest and 
the highest average VaR at 95% confidence level is 33,46%. At 99% confidence 
level, VaR model with the lowest average VaR was the EWMA Monte Carlo model 
(2,198%), BRW model with λ = 0.99 reported the highest average VaR of 3,036%. 
The difference between the lowest and the highest average VaR at 99% confidence 
level is 38,13%. 
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SKSM index 
 
Performance of tested VaR models for Slovakian SKSM index at 95 and 99% 
confidence level is given in tables 132 and 133. According to Kupiec test at 95% 
confidence level all of the tested VaR models passed the test except HS 50 model 
with frequency of failures of 7,4%, which is 48% more than expected. At 99% 
confidence level historical simulation models with 50 and 100 day rolling window 
failed the test and reported the observed frequency of failures of 3,2% and 2,6% 
respectively.  BRW model with λ = 0.97 failed the Kupiec test at 99% confidence 
level with reported frequency of failures of 1,8%. Normal variance covariance and 
RiskMetrics failed the test with reported frequency of failures of 2,4% and 3% 
respectively.  Both Normal Monte Carlo and EWMA Monte Carlo failed the test 
with reported frequency of failures of 2,4% and 3,2% respectively. GARCH-
RiskMetrics model also failed the test with frequency of failures of 1,6%. HS 250, 
HS 500, BRW model with λ = 0.99 and HHS model successfully passed the Kupiec 
test at 99% confidence level. With frequency of failure of 3,2% (more than three 
times more than expected) HS 50 and EWMA Monte Carlo are models with the 
highest reported frequency of failures. According to Christoffersen independence 
test at 95% confidence level BRW model with λ = 0.97 failed the test at 10% 
significance level. At 99% confidence level all of the tested VaR models passed the 
Christoffersen independence test. Based on Lopez test at 95% confidence level VaR 
model with the worst ranking based on underestimation of risk is the HS 50 model, 
and the worst ranking model based on overestimation of risk is the GARCH-
RiskMetrics model. The best ranked VaR model is the HS 500 model. At 99% 
confidence level VaR model with the worst ranking based on underestimation of risk 
is the HS 50 model. None of the VaR models overestimated the risk at 99% 
confidence level.  The best ranked VaR model is the BRW model with λ = 0.99. 
Based on Blanco-Ihle test at 95% confidence level the best ranking VaR model is 
the GARCH-RiskMetrics model and the worst is the HS 50 model, meaning that it 
experienced the highest losses in excess of forecasted VaR. At 99% confidence level 
the best ranking VaR model is the HHS model and the worst is the EWMA Monte 
Carlo model. According to RMSE measure, at 95% confidence level, the best 
performing VaR model is HS 250 model and the worst ranked model is GARCH-
RiskMetrics model. At 99% confidence level the best ranking VaR model is EWMA 
Monte Carlo and the worst ranked model is the BRW model with λ = 0.99. 
According to MAPE measure, at 95% confidence level, the best performing VaR 
model is the BRW model with λ = 0.97, and the worst ranked model is the EWMA 
Monte Carlo model. At 99% confidence level the best ranking VaR model is the 
BRW model with λ = 0.99 and the worst ranked model is the HS 50 model. In the 
analysed period, at 95% confidence level, VaR model with the lowest average VaR 
was the HS 50 model (1,43%), GARCH-RiskMetrics model reported the highest 
average VaR of 2,088%. The difference between the lowest and the highest average 
VaR at 95% confidence level is 46,01%. At 99% confidence level, VaR model with 
the lowest average VaR was the EWMA Monte Carlo model (2,432%), BRW model 
with λ = 0.99 reported the highest average VaR of 3,875%. The difference between 
the lowest and the highest average VaR at 99% confidence level is 59,33%. 
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CROBEX index 
 
Performance of tested VaR models for Croatian CROBEX index at 95 and 99% 
confidence level is given in tables 134 and 135. According to Kupiec test at 95% 
confidence level all of the tested VaR models passed the test except HS 50 model 
with frequency of failures of 6,2%, which is 24% more than expected. At 99% 
confidence level historical simulation models with 50 and 100 day rolling window 
failed the test and reported the observed frequency of failures of 3% and 2% 
respectively.  BRW model with λ = 0.97 failed the Kupiec test at 99% confidence 
level with reported frequency of failures of 1,6%. All other tested VaR model 
successfully passed the Kupiec test at 99% confidence level. With frequency of 
failure of 3% (three times more than expected) HS 50 is the model with highest 
reported frequency of failures. According to Christoffersen independence test at 
95% confidence level HS 250, Normal variance-covariance and Normal Monte 
Carlo all failed the test at 10% significance level. At 99% confidence level HS 250, 
Normal variance-covariance and Normal Monte Carlo again failed the test. Based on 
Lopez test at 95% confidence level VaR model with the worst ranking based on 
underestimation of risk is the HS 50 model, and the worst ranking model based on 
overestimation of risk is the GARCH-RiskMetrics model. The best ranked VaR 
model is the BRW model with λ = 0.97. At 99% confidence level VaR model with 
the worst ranking based on underestimation of risk is the HS 50 model, and the 
worst ranking models based on overestimation of risk are the HS 500 and HHS 
model.  The best ranked VaR model is the Normal Monte Carlo model. Based on 
Blanco-Ihle test at 95% confidence level the best ranking VaR model is the 
GARCH-RiskMetrics model and the worst is the HS 50 model, meaning that it 
experienced the highest losses in excess of forecasted VaR. At 99% confidence level 
the best ranking VaR model is the HHS model and the worst is the HS 50 model. 
According to RMSE measure, at 95% confidence level, the best performing VaR 
model is HS 250 model and the worst ranked model is Normal variance-covariance 
model. At 99% confidence level the best ranking VaR model is GARCH-
RiskMetrics and the worst ranked model is the BRW model with λ = 0.99. 
According to MAPE measure, at 95% confidence level, the best performing VaR 
model is the EWMA Monte Carlo model, and the worst ranked models are Normal 
variance-covariance and Normal Monte Carlo model. At 99% confidence level the 
best ranking VaR model is the GARCH-RiskMetrics and the worst ranked model is 
the HS 50 model. In the analysed period, at 95% confidence level, VaR model with 
the lowest average VaR was the HS 50 model (1,478%), Normal variance-
covariance model reported the highest average VaR of 2,225%. The difference 
between the lowest and the highest average VaR at 95% confidence level is 50,54%. 
At 99% confidence level, VaR model with the lowest average VaR was the HS 50 
model (2,446%), BRW model with λ = 0.99 reported the highest average VaR of 
3,924%. The difference between the lowest and the highest average VaR at 99% 
confidence level is 60,43%. 
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VIN index 
 
Performance of tested VaR models for Croatian VIN index at 95 and 99% 
confidence level is given in tables 136 and 137. According to Kupiec test at 95% 
confidence level all of the tested VaR models passed the test except HS 250 model 
with frequency of failures of 6,2%, which is 24% more than expected. At 99% 
confidence level historical simulation models HS 50, HS 100 and HS 250 failed the 
test with frequencies of failures ranging from 2,8% for HS 50 to 1,8% for HS 100 
and HS 250 models. BRW model with λ = 0.97 failed the Kupiec test at 99% 
confidence level with reported frequency of failures of 2,2%. Normal variance 
covariance failed the test with reported frequency of failures of 1,8%.  Both Normal 
Monte Carlo and EWMA Monte Carlo failed the test with reported frequency of 
failures of 2% and 1,6% respectively. HS 500, BRW model with λ = 0.99, 
RiskMetrics, GARCH-RiskMetrics and HHS model successfully passed the Kupiec 
test at 99% confidence level. With frequency of failure of 2,8% (almost three times 
more than expected) HS 50 is the model with highest reported frequency of failures. 
According to Christoffersen independence test at 95% confidence level HS 50, HS 
250, HS 500, BRW model with λ = 0.99, Normal variance-covariance and Normal 
Monte Carlo all failed the test at 10% significance level. At 99% confidence level all 
of the tested VaR models passed the Christoffersen independence test. Based on 
Lopez test at 95% confidence level VaR model with the worst ranking based on 
underestimation of risk is the HS 250 model, and the worst ranking model based on 
overestimation of risk is the GARCH-RiskMetrics model. The best ranked VaR 
model is the Normal variance-covariance model. At 99% confidence level VaR 
model with the worst ranking based on underestimation of risk is the HS 50 model, 
and the worst ranking model based on overestimation of risk is the HHS model.  The 
best ranked VaR model is the RiskMetrics model. Based on Blanco-Ihle test at 95% 
confidence level the best ranking VaR model is the GARCH-RiskMetrics model and 
the worst is the HS 250 model, meaning that it experienced the highest losses in 
excess of forecasted VaR. At 99% confidence level the best ranking VaR model is 
the HHS model and the worst is the HS 50 model. According to RMSE measure, at 
95% confidence level, the best performing VaR model is HS 50 model and the worst 
ranked model is GARCH-RiskMetrics model. At 99% confidence level the best 
ranking VaR model is HS 100 and the worst ranked model is the HHS. According to 
MAPE measure, at 95% confidence level, the best performing VaR model is the HS 
50 model, and the worst ranked model is the HS 250 model. At 99% confidence 
level the best ranking VaR model is the RiskMetrics and the worst ranked model is 
the HS 50 model. In the analysed period, at 95% confidence level, VaR model with 
the lowest average VaR was the HS 50 model (1,231%), GARCH-RiskMetrics 
model reported the highest average VaR of 1,87%. The difference between the 
lowest and the highest average VaR at 95% confidence level is 51,91%. At 99% 
confidence level, VaR model with the lowest average VaR was the HS 100 model 
(2,057%), HHS model reported the highest average VaR of 3,032%. The difference 
between the lowest and the highest average VaR at 99% confidence level is 47,4%. 
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TALSE index 
 
Performance of tested VaR models for Estonian TALSE index at 95 and 99% 
confidence level is given in tables 138 and 139. According to Kupiec test at 95% 
confidence level all of the tested VaR models passed the test except HS 50 model 
with frequency of failures of 6,8%, which is 36% more than expected. At 99% 
confidence level historical simulation models with 50 and 100 day rolling window 
failed the test and reported the observed frequency of failures of 2,2% and 1,8% 
respectively. EWMA Monte Carlo model failed the Kupiec test at 99% confidence 
level with reported frequency of failures of 1,8%. Other models successfully passed 
the Kupiec test at 99% confidence level. With frequency of failure of 2,2% (more 
than two times more than expected) HS 50 is the model with highest reported 
frequency of failures. According to Christoffersen independence test at 95% 
confidence level HS 50, HS 100, HS 250, both BRW models with λ = 0.97 and 0.99, 
RiskMetrics and EWMA Monte Carlo all failed the test at 10% significance level. 
At 99% confidence level all of the tested VaR models passed the Christoffersen 
independence test. Based on Lopez test at 95% confidence level VaR model with the 
worst ranking based on underestimation of risk is the HS 50 model, and the worst 
ranking model based on overestimation of risk is the GARCH-RiskMetrics model. 
The best ranked VaR model is the BRW model with λ = 0.97. At 99% confidence 
level VaR model with the worst ranking based on underestimation of risk is the HS 
50 model, and the worst ranking model based on overestimation of risk is the HHS 
model. The best ranked VaR model is the BRW model with λ = 0.99. Based on 
Blanco-Ihle test at 95% confidence level the best ranking VaR model is the 
GARCH-RiskMetrics model and the worst is the HS 50 model, meaning that it 
experienced the highest losses in excess of forecasted VaR. At 99% confidence level 
the best ranking VaR model is the HHS model and the worst is the HS 50 model. 
According to RMSE measure, at 95% confidence level, the best performing VaR 
model is HS 50 model and the worst ranked model is GARCH-RiskMetrics model. 
At 99% confidence level the best ranking VaR model is HS 50 and the worst ranked 
model is the HHS. According to MAPE measure, at 95% confidence level, the best 
performing VaR model is the BRW model with λ = 0.97, and the worst ranked 
model is the GARCH-RiskMetrics model. At 99% confidence level the best ranking 
VaR model is the BRW model with λ = 0.97 and the worst ranked model is the HS 
50 model. In the analysed period, at 95% confidence level, VaR model with the 
lowest average VaR was the HS 50 model (0,843%), GARCH-RiskMetrics model 
reported the highest average VaR of 1,5%. The difference between the lowest and 
the highest average VaR at 95% confidence level is 77,94%. At 99% confidence 
level, VaR model with the lowest average VaR was the HS 50 model (1,411%), 
HHS model reported the highest average VaR of 2,51%. The difference between the 
lowest and the highest average VaR at 99% confidence level is 77,89%. 
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RIGSE index 
 
Performance of tested VaR models for Latvian RIGSE index at 95 and 99% 
confidence level is given in tables 140 and 141. According to Kupiec test at 95% 
confidence level all of the tested VaR models passed the test, except the historical 
simulation models with 50 and 500 day rolling window, which reported the 
observed frequency of failures of 6,8% and 6,2% respectively. With frequency of 
failure of 6,8% (36% more than expected) HS 50 is the model with highest reported 
frequency of failures. At 99% confidence level historical simulation models with 50 
and 100 day rolling window failed the test and reported the observed frequency of 
failures of 3,4% and 2,2% respectively.  BRW model with λ = 0.97 failed the Kupiec 
test at 99% confidence level with reported frequency of failures of 2,2%. Normal 
variance-covariance model also failed the test with frequency of failures of 1,6%. 
All other VaR models passed the test. With frequency of failure of 3,4% (more than 
three times more than expected) HS 50 is the model with highest reported frequency 
of failures. According to Christoffersen independence test at 95% confidence level 
HS 500 model failed the test at 10% significance level. At 99% confidence level all 
of the tested VaR models passed the Christoffersen independence test. Based on 
Lopez test at 95% confidence level VaR model with the worst ranking based on 
underestimation of risk is the HS 50 model, and the worst ranking model based on 
overestimation of risk is the GARCH-RiskMetrics model. The best ranked VaR 
model is the BRW model with λ = 0.99. At 99% confidence level VaR model with 
the worst ranking based on underestimation of risk is again the HS 50 model, and 
the worst ranking model based on overestimation of risk is again the GARCH-
RiskMetrics model. The best ranked VaR model is the EWMA Monte Carlo model. 
Based on Blanco-Ihle test at 95% confidence level the best ranking VaR model is 
the GARCH-RiskMetrics model and the worst is the HS 50 model, meaning that it 
experienced the highest losses in excess of forecasted VaR. At 99% confidence level 
the best ranking VaR model is again the GARCH-RiskMetrics model and the worst 
is again the HS 50 model. According to RMSE measure, at 95% confidence level, 
the best performing VaR model is HS 250 model and the worst ranked model is 
GARCH-RiskMetrics model. At 99% confidence level the best ranking VaR model 
is HS 50 and the worst ranked model is again the GARCH-RiskMetrics model. 
According to MAPE measure, at 95% confidence level, the best performing VaR 
model is the RiskMetrics model and the worst ranked model is the GARCH-
RiskMetrics model. At 99% confidence level the best ranking VaR model is the 
BRW model with λ = 0.99 and the worst ranked model is the HS 50 model. In the 
analysed period, at 95% confidence level, VaR model with the lowest average VaR 
was the HS 50 model (1,093%), GARCH-RiskMetrics model reported the highest 
average VaR of 1,651%. The difference between the lowest and the highest average 
VaR at 95% confidence level is 51,05%. At 99% confidence level, VaR model with 
the lowest average VaR was the HS 50 model (1,602%), GARCH-RiskMetrics 
model reported the highest average VaR of 2,335%. The difference between the 
lowest and the highest average VaR at 99% confidence level is 45,76%. 
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VILSE index 
 
Performance of tested VaR models of Lithuanian VILSE index at 95 and 99% 
confidence level is given in tables 142 and 143. According to Kupiec test at 95% 
confidence level all of the tested VaR models passed the test, except the historical 
simulation models with 50 and 100 day rolling window, which reported the 
observed frequency of failures of 8,6% and 7,8% respectively. With frequency of 
failure of 8,6% (72% more than expected) HS 50 is the model with highest reported 
frequency of failures. At 99% confidence level historical simulation models with 50 
and 100 day rolling window failed the test and reported the observed frequency of 
failures of 3,6% and 2,8% respectively.  BRW model with λ = 0.97 also failed the 
Kupiec test at 99% confidence level with reported frequency of failures of 2,8%. All 
other VaR models passed the test. With frequency of failure of 3,6% (more than 
three times more than expected) HS 50 is the model with highest reported frequency 
of failures. According to Christoffersen independence test at 95% confidence level 
all tested VaR model failed the test at 10% significance level, except BRW model 
with λ = 0.97. At 99% confidence level HS 100, HS 250, both BRW models with λ 
= 0.97 and 0.99, RiskMetrics and EWMA Monte Carlo model all failed the 
Christoffersen independence test. Based on Lopez test at 95% confidence level VaR 
model with the worst ranking based on underestimation of risk is the HS 50 model, 
and the worst ranking model based on overestimation of risk is the GARCH-
RiskMetrics model. The best ranked VaR model is the BRW model with λ = 0.99. 
At 99% confidence level VaR model with the worst ranking based on 
underestimation of risk is again the HS 50 model, and the worst ranking model 
based on overestimation of risk is the HHS model. The best ranked VaR model is 
the Normal variance-covariance model. Based on Blanco-Ihle test at 95% 
confidence level the best ranking VaR model is the GARCH-RiskMetrics model and 
the worst is the HS 50 model, meaning that it experienced the highest losses in 
excess of forecasted VaR. At 99% confidence level the best ranking VaR model is 
the HHS model and the worst is again the HS 50 model. According to RMSE 
measure, at 95% confidence level, the best performing VaR model is HS 50 model 
and the worst ranked model is GARCH-RiskMetrics model. At 99% confidence 
level the best ranking VaR model is HS 50 and the worst ranked model is the HS 
500 model. According to MAPE measure, at 95% confidence level, the best 
performing VaR model is the BRW model with λ = 0.99 and the worst ranked model 
is the HS 50 model. At 99% confidence level the best ranking VaR model is the 
RiskMetrics model and the worst ranked model is the HS 50 model. In the analysed 
period, at 95% confidence level, VaR model with the lowest average VaR was the 
HS 50 model (0,845%), GARCH-RiskMetrics model reported the highest average 
VaR of 1,336%. The difference between the lowest and the highest average VaR at 
95% confidence level is 58,11%. At 99% confidence level, VaR model with the 
lowest average VaR was the HS 50 model (1,363%), HS 500 model reported the 
highest average VaR of 2,197%. The difference between the lowest and the highest 
average VaR at 99% confidence level is 61,19%. 
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CYSMGEN index 
 
Performance of tested VaR models for Cyprus CYSMGEN index at 95 and 99% 
confidence level is given in tables 144 and 145. According to Kupiec test at 95% 
confidence level all of the tested VaR models passed the test except HS 50 model 
with frequency of failures of 6,4%, which is 28% more than expected. At 99% 
confidence level historical simulation models with 50 and 100 day rolling window 
failed the test and reported the observed frequency of failures of 2,8% and 2,6% 
respectively. BRW model with λ = 0.97 failed the Kupiec test at 99% confidence 
level with reported frequency of failures of 1,8%. Normal variance-covariance and 
Normal Monte Carlo model also failed the Kupiec test at 99% confidence level with 
reported frequency of failures of 1,6%. Other models successfully passed the Kupiec 
test at 99% confidence level. With frequency of failure of 2,8% (almost three times 
more than expected) HS 50 is the model with highest reported frequency of failures. 
According to Christoffersen independence test at 95% confidence level HS 50, HS 
100, both BRW models with λ = 0.97 and 0.99 and Normal variance-covariance 
model all failed the test at 10% significance level. At 99% confidence level HS 50, 
HS 100 and both BRW models with λ = 0.97 and 0.99 failed the Christoffersen 
independence test. Based on Lopez test at 95% confidence level VaR model with the 
worst ranking based on underestimation of risk is the HS 50 model, and the worst 
ranking model based on overestimation of risk is the HHS model. The best ranked 
VaR model is the HS 250 model. At 99% confidence level VaR model with the 
worst ranking based on underestimation of risk is again the HS 50 model, and the 
worst ranking model based on overestimation of risk is again the HHS model. The 
best ranked VaR model is the EWMA Monte Carlo model. Based on Blanco-Ihle 
test at 95% confidence level the best ranking VaR model is the HHS model and the 
worst is the HS 100 model, meaning that it experienced the highest losses in excess 
of forecasted VaR. At 99% confidence level the best ranking VaR model is again the 
HHS model and the worst is the HS 50 model. According to RMSE measure, at 95% 
confidence level, the best performing VaR model is HS 50 model and the worst 
ranked model is HHS model. At 99% confidence level the best ranking VaR model 
is HS 50 and the worst ranked model is the HS 500. According to MAPE measure, 
at 95% confidence level, the best performing VaR model is the BRW model with λ 
= 0.97, and the worst ranked models are GARCH-RiskMetrics and HHS models. At 
99% confidence level the best ranking VaR model is the EWMA Monte Carlo 
model and the worst ranked model is the HS 50 model. In the analysed period, at 
95% confidence level, VaR model with the lowest average VaR was the HS 50 
model (1,204%), HHS model reported the highest average VaR of 1,793%. The 
difference between the lowest and the highest average VaR at 95% confidence level 
is 48,92%. At 99% confidence level, VaR model with the lowest average VaR was 
the HS 50 model (1,814%), HS 500 model reported the highest average VaR of 
2,974%. The difference between the lowest and the highest average VaR at 99% 
confidence level is 63,95%. 
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MALTEX index 
 
Performance of tested VaR models for Maltan MALTEX index at 95 and 99% 
confidence level is given in tables 146 and 147. According to Kupiec test at 95% 
confidence level all of the tested VaR models passed the test, except the historical 
simulation models with 50 and 100 day rolling window, which reported the 
observed frequency of failures of 7,6% and 6,4% respectively. With frequency of 
failure of 7,6% (52% more than expected) HS 50 is the model with highest reported 
frequency of failures. At 99% confidence level historical simulation models with 50, 
100 and 250 day rolling window failed the test and reported the observed frequency 
of failures of 2,8% for HS 50 and HS 100 and 2,2% for HS 250. Both BRW models 
with λ = 0.97 and 0.99 failed the Kupiec test at 99% confidence level with reported 
frequency of failures of 2,2% and 1,6% respectively. Normal variance-covariance 
and Normal Monte Carlo model also failed the Kupiec test at 99% confidence level 
with reported frequency of failures of 2,2% and 2,4% respectively. Other models 
successfully passed the Kupiec test at 99% confidence level. With frequency of 
failure of 2,8% (almost three times more than expected) HS 50 and HS 100 are 
model with the highest reported frequency of failures. According to Christoffersen 
independence test at 95% confidence level all tested VaR model failed the test at 
10% significance level. At 99% confidence level HS 50, HS 100, HS 250, HS 500, 
both BRW models with λ = 0.97 and 0.99, Normal variance-covariance and Normal 
Monte Carlo model all failed the Christoffersen independence test. Based on Lopez 
test at 95% confidence level VaR model with the worst ranking based on 
underestimation of risk is the HS 50 model, and the worst ranking model based on 
overestimation of risk is the RiskMetrics model. The best ranked VaR model is the 
BRW model with λ = 0.99. At 99% confidence level VaR model with the worst 
ranking based on underestimation of risk is again the HS 50 model, and the worst 
ranking model based on overestimation of risk is the HHS model. The best ranked 
VaR model is the GARCH-RiskMetrics model. Based on Blanco-Ihle test at 95% 
confidence level the best ranking VaR model is the HHS model and the worst is the 
HS 50 model, meaning that it experienced the highest losses in excess of forecasted 
VaR. At 99% confidence level the best ranking VaR model is again the HHS model 
and the worst is again the HS 50 model. According to RMSE measure, at 95% 
confidence level, the best performing VaR model is HS 500 model and the worst 
ranked model is HHS model. At 99% confidence level the best ranking VaR model 
is Normal Monte Carlo and the worst ranked model is the HHS model. According to 
MAPE measure, at 95% confidence level, the best performing model is the BRW 
model with λ = 0.97 and the worst ranked model is HS 50. At 99% confidence level 
the best ranking VaR models are RiskMetrics and EWMA Monte Carlo model and 
the worst ranked model is HS 50 model. In the analysed period, at 95% confidence 
level, VaR model with the lowest average VaR was the HS 50 model (0,836%), 
HHS model reported the highest average VaR of 1,172%. The difference between 
the lowest and the highest average VaR at 95% confidence level is 40,19%. At 99% 
confidence level, VaR model with the lowest average VaR was the HS 100 model 
(1,463%), HHS model reported the highest average VaR of 1,949%. The difference 
between the lowest and the highest average VaR at 99% confidence level is 33,22%. 
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Summary of findings 
 
After reviewing the performance of individual VaR models, at 95% and 99% 
confidence level for every analysed stock index from transition countries, 
compliance with the regulatory framework of VaR models for the entire market is 
analysed. Overall summary results are very useful to see how tested VaR models 
fare with regulatory backtesting framework based on the complete testing sample. 
Kupiec test and Christoffersen independence test are used to identifying VaR 
models that are acceptable to the regulator, and actually provide the desired level of 
safety to individual banks and, due to contagion effect, to the entire banking sector. 
The results of the overall acceptance, according to Kupiec and Christoffersen 
independence test, of tested VaR models on the stock markets of transition 
countries, at 95% confidence level are presented in table 148. 
 
Table 148 - Number of VaR model failures according to Kupiec and Christoffersen 

independence test, tested on 12 selected stock indexes, 500 
observations, at 95% confidence level 

Model HS 50 HS 100 HS 250 HS 500 
BRW 

λ=0,97 
BRW 

λ=0,99 

Kupiec test 9 4 2 1 0 0 

Christoffersen IND test 7 5 7 6 5 6 
              

Model 
Normal 
VCV 

Risk 
Metrics 

Normal 
MC 

EWMA 
MC 

GARCH 
RM 

HHS 

Kupiec test 1 1 1 1 0 0 

Christoffersen IND test 6 4 5 4 2 2 
 
From the data in table 148 it is clear that at 95% confidence level, tested VaR 
models perform very differently with a majority of VaR models failing Kupiec test 
for at least one stock index. The results of Christoffersen independence test cause 
even greater concern because all of the tested VaR models failed the test for more 
than one stock index. 
 
The only VaR models that passed the Kupiec test across all the analysed stock 
indexes are the HHS model, GARCH-RiskMetrics model and both BRW models 
with λ = 0.97 and 0.99. The worst performer according to Kupiec test, out of the 
tested VaR model was the HS 50 model, which failed the Kupiec test for nine out of 
twelve stock indexes. HS 50 model is followed by HS 100 (four failures) and HS 
250 (two failures) models. It is surprising that even RiskMetrics model that is 
famous for its good track record at 95% confidence level failed the Kupiec test for 
one stock index (SBI20 index).   
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None of the twelve tested VaR models satisfied the Christoffersen independence test 
across all the analysed stock indexes, but the two models with the best performance 
are the HHS model and GARCH-RiskMetrics model that failed the test for two out 
of twelve indexes. Both models failed the Christoffersen independence test for 
MALTEX and VILSE index. The worst performers are HS 50 and HS 250 models 
(seven failures), followed by HS 500 and BRW model with λ = 0.99 (six failures). 
 
Overall, the best performers according to Kupiec and Christoffersen independence 
test at 95% confidence level across stock indexes of transition countries are the HHS 
model and the GARCH-RiskMetrics model. The worst performers are the HS 50 an 
HS 100 models. 
 
Although it is informative to look at VaR model performance at different confidence 
levels, the true test of VaR model acceptability to the regulators is its performance at 
99% confidence level, as prescribed by the Basel Committee. The results of the 
overall acceptance, according to Kupiec and Christoffersen independence test, of 
tested VaR models on the stock markets of transition countries, at 99% confidence 
level are presented in table 149. 
 
Table 149 - Number of VaR model failures according to Kupiec and Christoffersen 

independence test, tested on 12 selected stock indexes, 500 
observations, at 99% confidence level 

Model HS 50 HS 100 HS 250 HS 500 
BRW 

λ=0,97 
BRW 

λ=0,99 

Kupiec test 12 12 4 1 11 1 

Christoffersen IND test 3 3 4 2 3 3 
              

Model 
Normal 
VCV 

Risk 
Metrics 

Normal 
MC 

EWMA 
MC 

GARCH 
RM 

HHS 

Kupiec test 8 4 8 6 3 0 

Christoffersen IND test 2 2 2 2 0 0 
 
The data from table 149 reveals a very distributing finding that should serve as a 
great warning to both regulators and market participants. At 99% confidence level, 
almost all of tested VaR models perform very poorly. In the analysed period, only 
one tested VaR model – the HHS model satisfied the Kupiec test at 99% confidence 
level across all of the analysed stock indexes from transition countries. The results 
of Christoffersen independence test are equally alarming because only two VaR 
models (HHS model and GARCH-RiskMetrics model) passed the test for all of the 
tested stock indexes. 
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The HHS model is the only VaR model that passed the Kupiec test for all of the 
analysed stock indexes at 99% confidence level. HHS model is followed by HS 500 
model and BRW model with λ = 0.99, which failed the Kupiec test for one index. 
HS 500 model failed the Kupiec test for BUX index, and BRW model with λ = 0.99 
failed the Kupiec test for MALTEX index. The GARCH-RiskMetrics models that 
shared the first place with HHS model at 95% confidence level failed the Kupiec test 
at 99% confidence level for three out of twelve analysed stock indexes (SBI20 
index, PX50 index and SKSM index). 
 
The worst performers according to Kupiec test, out of the twelve tested VaR model, 
at 99% confidence level, were the HS 50 and HS 100 models, which failed the 
Kupiec test for all of the twelve tested stock indexes. HS 50 and HS 100 models are 
followed by BRW model with λ = 0.97 (eleven failures), Normal variance-
covariance and Normal Monte Carlo model (eight failures). The drastic difference in 
the performance of the two BRW models at 99% confidence level can be attributed 
to the fact that volatility in the capital markets of transition countries is very 
persistent and in such circumstances fast decaying volatility models perform very 
poorly. Two out of twelve tested VaR models satisfied the Christoffersen 
independence test at 99% confidence level across all the analysed stock indexes. 
Equally to the results obtained for 95% confidence level HHS model and GARCH-
RiskMetrics are the best performers even at 99% confidence level.  The worst 
performer according to Christoffersen independence test is the HS 250 models (four 
failures), followed by HS 50, HS 100, BRW models with λ = 0.97 and 0.99, which 
all recorded three failures. Overall, the best performer according to both the Kupiec 
and Christoffersen independence test at 99% confidence level across stock indexes 
of transition countries is the HHS model. The worst performers are the HS 50 and 
HS 100 models. Performed backtests at both 95% and 99% confidence level clearly 
point to the conclusion that the widespread models of calculating Value at Risk, 
such as Historical simulation, Normal variance-covariance model and RiskMetrics 
system do not capture the dynamics of the data generating processes of transition 
countries’ stock indexes. 
 
 
6.5 Discussion 
 
From obtained results for the stock indexes from most of the transition countries it is 
clear that these markets are experiencing a common, strong positive trend, which 
clearly violates the stationarity assumption of the time series. On the other hand, 
logarithmic differences of these time series can be treated as stationary. As could be 
expected, the financial markets of the transition countries are experiencing a boom 
due to the catching up of these economies to the European standards and strong 
inflow of foreign direct and portfolio investments. Furthermore, securities from 
these markets are trading at a discount compared to securities from old EU member 
states. The only indexes that diverge from a strong positive trend present in CEE 
countries, Baltic states and Croatia, in the analysed period, are CYSMGENL, 
WIG20 and MALTEX index. The CYSMGENL index shows no common features 
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with any of the other analysed indexes, which may indicate that investors did not 
perceive this stock market as potentially prosperous and benefiting from joining into 
EU. MALTEX and WIG20 index do not show a positive trend throughout the entire 
analysed period, from 2000 to 2006, but after a sharp decline in the value of their 
indexes they also experienced a strong positive trend in the second half of the 
observation period. As was stated earlier, volatility clustering and occurrence of 
extreme positive and negative returns characterises the returns of stock indexes from 
transition countries. From table 123 and individual statistical analyses of stock 
indexes from transition countries performed in previous chapters, it was determined 
that all of the indexes are characterised by fat tails and asymmetry, with seven 
indexes having negative skewness and five indexes having positive skewness. 
Lilliefors and Jarque-Bera tests of normality for the tested stock indexes of transition 
countries confirm the conclusion drawn from findings of skewness and kurtosis, that 
there is close to zero probability of empirical distributions of these returns being 
normally distributed.   
 
The stock index with the highest daily mean return in the analysed period is the VIN 
index (0,13%), and the index with the lowest mean value is the CYSMGENL index 
(- 0,12%). CYSMGENL index is also the only index that has negative mean value in 
the analysed period. Investing long-term in VIN index yielded the highest gains, and 
investing in CYSMGENL yielded the highest losses. The most volatile index in the 
analysed period is the RIGSE index with standard deviation of 1,63%. The least 
volatile index in the same period is SBI20 index with standard deviation of 0,69%. 
In the analysed period the largest daily gain of 14,98% is recorded for CROBEX 
index. In the same period, the highest daily loss of 15,67% is recorded for VIN 
index.  
 
In the analysed period RIGSE index has the highest value of negative asymmetry (- 
1,278), and SBI20 index has the highest value of positive asymmetry (1,119). This 
means, that among the tested stock indexes, SBI20 index has the highest probability 
of experiencing positive returns, and RIGSE index has the highest probability of 
experiencing negative returns. Highest value of excess kurtosis is found for VIN 
index (23,7), and lowest value is found for PX50 index (4,36). Consequently, 
investing in VIN index means that investors have to be prepared for extreme 
positive and negative returns. Average excess kurtosis across the stock indexes of 
transition countries equals 12,8, which is a very high value compared to stock 
indexes from developed countries or FX markets. 
 
According to Lilliefors test of normality among the tested stock indexes, BUX index 
is closest to being normally distributed. According to Jarque-Bera test of normality 
WIG20 index can be considered as being closest to normality. It is worth noting that 
both of these indexes have an insignificant probability of being normally distributed. 
Both normality tests identify the RIGSE index as being the farthest from normality. 
 
These characteristics of analysed stock indexes of transition countries have serious 
consequences for the performance of tested VaR models in these markets. It means 
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that VaR models that are based on assumption of normally distributed returns, such 
as Normal variance-covariance model, RiskMetrics model and Normal and EWMA 
Monte Carlo cannot properly account for the risk present in these indexes and will, 
as a consequence, underestimate the true level of risk. Even more troubling for the 
VaR models based on normality assumption, as well as for the nonparametric and 
semi-parametric approaches that are based on the assumption of independently and 
identically distributed observations, such as historical simulation and BRW 
approach is the fact that the daily log returns of stock indexes in the transition 
markets exhibit a significant degree of autocorrelation and heteroskedasticity, is one 
of the most common obstacles to proper implementation of many VaR models. This 
finding is very indicative for risk managers, because it proves that the elementary 
assumption of many VaR models is not satisfied, and that the VaR figures obtained 
from such models cannot be trusted and at best, provide only unconditional 
coverage.  
 
Since autocorrelation and heteroskedasticity automatically exclude the possibility of 
observations being independently and identically distributed, it is necessary to 
capture the structure of the analysed data and obtain independently and identically 
distributed observations. To render the observations independently and identically 
distributed the transformation of original return data is performed by fitting an 
ARMA-GARCH model. As was proven in the empirical study, ARMA-GARCH 
model successfully captured the dynamics of stock indexes from transition 
countries, and produced standardised innovations that under a number of tests 
proved to be independently and identically distributed. In modelling conditional 
volatility basic GARCH (1,1) model was sufficient for all but one stock index. In 
modelling conditional volatility for RIGSE index it was necessary to include a 
leverage term in the conditional volatility equation. The most parsimonious 
asymmetric GARCH model that captured the leverage effect in the RIGSE index 
returns was the GJR-GARCH (1,1) model. Finding that the ARMA-GARCH model 
successfully captures the dynamics of analysed stock indexes is important for both 
regulators and risk professionals in the transition countries, indicating that it is 
necessary to implement a more sophisticated conditional volatility models to 
adequately capture the dynamics of these markets. VaR models that assume constant 
volatility or VaR models that take a more simplictic view of volaitlity modelling, 
such as equally weighted and exponentially weighted (e.g. RiskMetrics) models will 
not perform satisfactory in these conditions. Estimated ARMA-GARCH parameters 
for stock indexes of transition countries are presented in table 150. 
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Table 150 - Estimated ARMA-GARCH parameters for stock indexes of transition 
countries 

Mean  Volatility 
  

C AR MA K GARCH ARCH Leverage 

CROBEX 0     1.06E-05 0.8323 0.11082   

VIN 0 0.14457   1.25E-05 0.78932 0.1405   

0.42607 SBI20 0.000514 
-0.14067 

  6.69E-06 0.50069 0.39003   

BUX 0     8.59E-06 0.89067 0.066215   

WIG20 0     5.6E-06 0.93292 0.047987   

PX50 0.000755     4.69E-06 0.90381 0.069603   

SKSM 0.000689   -0.05749 1.27E-05 0.85016 0.07733   

0.21580 TALSE 0.00096   
0.09233 

6.76E-06 0.84035 0.10469   

1.08050 VILSE 0 
-0.08366 

-0.96844 1.31E-05 0.55848 0.25825   

RIGSE 0.000755   -0.13221 4.69E-06 0.90381 0.069603 -0.39327 

CYSMGENL -0.00135 0.13036   6.04E-06 0.79835 0.19802   

MALTEX -0.00054 0.27526   6.71E-06 0.64587 0.18561   

 
As can be seen from table 150 some of the tested indexes like SBI20, VILSE, 
MALTEX, VIN and CYSMGENL show unusually low persistence in volatility but 
are very reactive to previous period’s residuals, which will make VaR forecasts 
based on GARCH volatility very spiky. Majority of tested stock indexes is not even 
closely integrated as is presumed by EWMA volatility modelling that is underlying 
the RiskMetrics system. VILSE index is farthest from being integrated with α + β 
being only 0,8167. All of the indexes from transition countries, except CYSMGENL 
index, mean revert, i.e. there is convergence in term structure forecasts to the long-
term average volatility level. CYSMGENL index distinctly differs from other tested 
stock indexes and could be modelled by an IGARCH model or a simple EWMA 
model since it is close to being fully integrated. Being integrated means that the 
volatility of CYSMGENL index is itself a random walk process that has undefined 
unconditional variance and term structure. Estimated GARCH parameters of stock 
indexes from transition countries point to the conclusion that VaR models based on 
simpler conditional volatility models, such as MA or EWMA will be 
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underestimating or overestimating the true level of risk. Due to different 
assumptions and volatility prediction techniques, different VaR models provided 
forecasts for tested stock indexes that differed significantly. For example, at 95% 
confidence level TALSE index recorded the greatest difference between the highest 
average VaR forecasted by GARCH-RiskMetrics model and lowest average VaR 
forecasted by HS 50 model, which was 77,94%. TALSE index, at 99% confidence 
level also recorder the greatest difference between the highest average VaR 
forecasted by HHS model and lowest average VaR forecasted by HS 50 model, 
which was 77,89%. The highest frequency of failures at 95% confidence level was 
recorder in VILSE index by HS 50 model and it amounted to 8,6%, which is 72% 
more than the expected frequency of failures. At 99% confidence level the highest 
frequencies of failure were recorded also in VILSE index, again by HS50 model 
(3,6%) and in SBI20 index by RiskMetrics model (3,6%) which is 3,6 times more 
than the expected frequency of failures. 
 
In order to come to some general conclusion about the performance of VaR models 
in emerging European markets it is necessary to evaluate the performance of each 
tested VaR model across all of the analysed stock indexes. To accomplish this it is 
necessary to rank the competing VaR models by their ability to provide satisfactory 
market risk conditional coverage for the analysed stock indexes. Ranking of the 
analysed VaR models is primarily performed by distinguishing between VaR models 
that satisfy the Kupiec test and those that fail the test. VaR models that satisfy the 
Kupiec test are tested by Christoffersen independence test. Models that pass the 
Christoffersen independence test are than ranked according to their Blanco-Ihle 
score and by their MAPE and RMSE measures. VaR models that fail the Kupiec test 
are ranked by their frequency of failures, giving better ranking to models with lower 
frequency. Further ranking for VaR models that failed the Kupiec test follows the 
same procedure that applies to VaR models that satisfied the Kupiec test. Based on 
their performance, VaR models are given points from 1 to 12, giving the best VaR 
model for a particular stock index one point, and giving the worst performing VaR 
model twelve points. Rankings obtained by following the outlined procedure are 
presented in table 151. 
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Table 151 - Ranking of VaR models across analysed stock indexes by their 
backtesting performance at 99% confidence level 

  SBI20 BUX WIG20 PX50 SKSM CROBEX 
HS 50 10 12 12 12 12 12 

HS 100 6 11 11 9 9 11 

HS 250 4 6 5 5 4 9 

HS 500 3 9 3 2 2 3 

BRW λ=0,97 8 10 7 8 6 10 

BRW λ=0,99 1 5 4 3 3 4 

Normal VCV 7 8 6 10 7 7 

Risk Metrics 12 3 9 6 10 5 

Normal MC 9 7 8 11 8 8 

EWMA MC 11 4 10 7 11 6 

GARCH RM 5 2 1 4 5 2 

HHS 2 1 2 1 1 1 
  VIN TALSE RIGSE VILSE CYSMGENL MALTEX 

HS 50 12 12 12 12 12 12 

HS 100 10 11 10 11 11 11 

HS 250 8 7 4 9 6 9 

HS 500 4 3 3 3 5 5 

BRW λ=0,97 11 9 11 10 10 8 

BRW λ=0,99 5 4 5 6 7 6 

Normal VCV 7 5 9 4 8 7 

Risk Metrics 3 8 7 7 3 4 

Normal MC 9 6 6 5 9 10 

EWMA MC 6 10 8 8 4 3 

GARCH RM 2 2 1 1 2 2 

HHS 1 1 2 2 1 1 
 
From the scoring in table 151 it can be concluded that for SBI20 index the best 
performer is the BRW model with λ = 0.99, followed by the HHS model. The worst 
performers for SBI20 index are the RiskMetrics model and EWMA Monte Carlo 
model. Such results for RiskMetrics and EWMA Monte Carlo model come as no 
surprise knowing that the volatility process of SBI20 index is not close to being 
integrated and has very different volatility parameters than assumed under EWMA 
volatility model used by RiskMetrics and EWMA Monte Carlo. Historical 
simulation models had mixed results, with HS models with longer rolling windows 
being far superior to models with shorter rolling windows. GARCH-RiskMetrics 
model although far better than the basic RiskMetrics model is ranked fifth, which 
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can be explained by low volatility persistence in SBI20 index which clearly creates 
problems for purely parametric approaches of measuring market risk. The best 
performer for the BUX index is the HHS model followed by the GARCH-
RiskMetrics model. RiskMetrics model placed also very high at third place. The 
worst performers for BUX index are the HS50 and HS100 models. BRW models are 
not ranked high, but are far better ranked than most of historical simulation models. 
Historical simulation models with longer rolling windows performed better than 
models with shorter rolling windows. The best performer for the WIG20 index is the 
GARCH-RiskMetrics model followed by the HHS model. The worst performers for 
WIG20 index are the HS50 and HS100 models. Historical simulation models with 
longer rolling windows performed very good with HS 500 model taking the third 
place. Surprisingly RiskMetrics model was ranked very low as well as both Monte 
Carlo models. RiskMetrics was ranked even lower than the Normal variance-
covariance model. BRW models gave mixed results, with BRW model with λ = 0.99 
being ranked better than most of the historical simulation models. The best 
performer for the PX50 index is the HHS model followed by the HS 500 model. The 
worst performers for PX50 index are the HS50 and Normal Monte Carlo model. 
BRW model with λ = 0.99 took the third place. GARCH-RiskMetrics and 
RiskMetrics models did not perform very well, with GARCH-RiskMetrics model 
being again significantly better than RiskMetrics model. The best performer for the 
SKSM index is the HHS model followed by the HS 500 model. The worst 
performers for SKSM index are the HS50 and EWMA Monte Carlo model. BRW 
model with λ = 0.99 took the third place. GARCH-RiskMetrics and RiskMetrics 
models did not perform very well, with RiskMetrics model being among the worst 
performers for this index, even worse than the Normal variance-covariance model. 
The best performer for the CROBEX index is the HHS model followed by the 
GARCH-RiskMetrics model. The worst performers for CROBEX index are the 
HS50 and HS100 models. HS 500 model was ranked third. Historical simulation 
models with longer rolling windows performed far better than models with shorter 
rolling windows. BRW models are not ranked high, but are far better ranked than 
most of historical simulation models. The best performer for the VIN index is the 
HHS model followed by the GARCH-RiskMetrics model. RiskMetrics model placed 
also very high at third place. The worst performers for VIN index are the HS50 
model and BRW model with λ = 0.97. Historical simulation models with longer 
rolling windows performed far better than BRW models. The best performer for the 
TALSE index is the HHS model followed by the GARCH-RiskMetrics model. The 
worst performers for TALSE index are the HS50 and HS100 models. HS 500 model 
was ranked third. BRW models are not ranked high, but are far better ranked than 
historical simulation models, with the exception of HS 500 model. RiskMetrics is 
among the worst performers for this index, being even worse than the Normal 
variance-covariance model. The best performer for the RIGSE index is the GARCH-
RiskMetrics model followed by the HHS model. HS 500 model was ranked third. 
BRW models are not ranked high, but are far better ranked than historical simulation 
models, with the exception of HS 500 model. The worst performers for RIGSE 
index are the HS50 model and BRW model with λ = 0.97. RiskMetrics is not among 
the best ranked VaR models for this index but it is better than Normal variance-
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covariance model and EWMA Monte Carlo model. The best performer for the 
VILSE index is the GARCH-RiskMetrics model followed by the HHS model. HS 
500 model was ranked third. BRW models are not ranked high, but BRW model 
with λ = 0.99 is far better ranked than majority of historical simulation models. The 
worst performers for VILSE index are the HS50 model and BRW model with λ = 
0.97. RiskMetrics is not among the worst performers for this index, but is worse 
than the Normal variance-covariance model. The best performer for the 
CYSMGENL index is the HHS model followed by the GARCH-RiskMetrics model. 
RiskMetrics model is placed also very high at third place. The worst performers for 
CYSMGENL index are the HS50 and HS100 models. BRW models did not perform 
very well with HS 250 and HS 500 models being better ranked. The best performer 
for the MALTEX index is the HHS model followed by the GARCH-RiskMetrics 
model. EWMA Monte Carlo model placed very high at third place. The worst 
performers for MALTEX index are the HS50 and HS100 models. RiskMetrics is not 
among the best performers for this index, but is better than the Normal variance-
covariance and Normal Monte Carlo model. BRW models are not ranked high, but 
are far better ranked than historical simulation models, with the exception of HS 500 
model. 
 
According to the performed tests and rankings, the HHS VaR model performed 
extremely well. HHS model is ranked as the best performer for eight out of twelve 
indexes and for the remaining four indexes it is ranked as second. GARCH-
RiskMetrics model as the closest competitor to HHS model, was ranked as the best 
VaR model only for three indexes, but on two occasions was ranked as low as fifth 
(SBI20 and SKSM index). Overall ranking results for analysed VaR models by their 
backtesting performance are given in table 152. 
 
Table 152 - Overall ranking scores of VaR models by their backtesting performance 

at 99% confidence level 

Model Score Place 

HHS 16 1 
GARCH RM 29 2 

HS 500 45 3 
BRW λ=0,99 53 4 

HS 250 76 5 
Risk Metrics 77 6 
Normal VCV 85 7 
EWMA MC 88 8 
Normal MC 96 9 
BRW λ=0,97 108 10 

HS 100 121 11 
HS 50 142 12 

Source: Table 151 



354   MARKET RISK IN TRANSITION COUNTRIES – VaR APPROACH 
 

 

Overall the HHS model is the best performing tested VaR model across the stock 
indexes from transition countries. In the second places lagging behind the HHS 
model by almost double the points is a modification of RiskMetrics model, the 
GARCH-RiskMetrics model. HS 500 model performed surprisingly well on the 
tested sample of stock indexes and although it is very simple, proved to be an 
acceptably good VaR estimator. The worst performing VaR models are the HS 50 
and HS 100 models. Classical parametric VaR models, the RiskMetrics model and 
Normal variance-covariance model are not placed very high in the overall ranking 
(sixth and seventh place) indicating that they are not very well suited for forecasting 
VaR in the transition countries.  
 
The obtained results, summarised in tables 151 and 152 confirm that the widespread 
models of calculating Value at Risk, such as Historical simulation, Normal 
variance-covariance model and RiskMetrics system do not capture the dynamics of 
the data generating processes of stock indexes in transition countries. 
 
Based on the obtained results, this conclusion can be accepted, but with an important 
notice that the HS 500 model performed surprisingly well although the basic 
prerequisites for its proper implementation, such as IID of returns, are not satisfied 
in the testing sample. This interesting phenomenon has a very simple explanation. 
Due to the extreme losses that occurred prior to and during the testing period HS 
500 VaR model set its forecasts very high and automatically achieved unconditional 
risk coverage without taking into consideration the actual level of risk. Because it 
reacts very slowly to changes in volatility its average VaR is among the highest of 
all the tested VaR models. Although HS 500 model provides correct unconditional 
coverage for all but one tested stock index, it would prove very costly for a bank 
implementing it, because in times of low volatility it signals the need for high 
provisions, which creates high opportunity costs. On the other hand, due to its very 
low reactivity and high persistence, HS 500 model hides a very serious danger of 
underestimating the true level of risk for longer periods of time if the market enters a 
volatile period after a longer period of low volatility. BRW model with λ = 0.99 is 
placed fourth in the overall ranking, being superior to all historical simulation 
models except the historical simulation model with the longest rolling window – HS 
500. RiskMetrics is ranked sixth making it superior to other basic parametric 
approaches, such as Normal variance-covariance model, and Normal and EWMA 
Monte Carlo models.  
 
Results from tables 149, 150, 151 and 152 give enough evidence to safely say that  
extensions of basic Value at Risk models, such as age-weighted Historical 
simulation and RiskMetrics system show improvements in measuring market risk, 
over the basic models.  
 
Although the difference in ranking and total score of BRW model with λ = 0.99 and 
HS 500 is minor, the HS 500 model again stand out and partially defies this 
hypothesis but characteristic reasons for such behaviour are already explained. 
Based on the performed analysis it is safe to say that in the capital markets of 
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transition countries, BRW model is extremely sensitive to the choice of decay factor. 
The proof of this can be seen from ranking of the same model but with a slightly 
different decay factor. BRW model with decay factor of 0.99 is ranked as fourth, but 
BRW model with decay factor of 0.97 is among the worst ranked VaR models. 
Since it is obvious that ad hoc setting of decay factor does not function in the capital 
markets of transition countries some formal procedure should be developed to 
estimate the optimal value of decay factor. With the optimal decay factor for each 
market it is very possible that the BRW model would perform much better. 
 
Tables 149, 150, 151 and 152 show that modifying the RiskMetrics model with 
GARCH based volatility forecasting brought significant improvements to basic 
RiskMetrics model, making it a very good risk measure for tested stock indexes 
second only to HHS VaR model. These finding clearly indicate that modifying the 
RiskMetrics model with GARCH based volatility forecasting yields significant 
improvement over the standard RiskMetrics model when applied to stock indexes of 
transition countries. Along with the analysis of backtesting results the qualitative 
characteristics of tested VaR models should also be taken into consideration to 
provide their complete picture. Qualitative characteristics for each of the tested VaR 
models are presented in table 153. 
 
Table 153 - Characteristics of tested VaR models 
 
 
 
 
 
 
 
 
 
 
Table 153 shows that the HHS model developed by the author has a number of 
advantages over most of the other tested VaR models. HHS model uses a quasi-
actual distribution of empirical returns, since GARCH volatility updating modifies 
the empirical distribution of the data. The same applies to the treatment of tails. 
Reaction speed of the HHS model is fast, reacting through GARCH volatility 
estimation to every change in the level of volatility regardless of the sign of the 
returns. Model risk associated with HHS model is quite low because the only 
parameters that have to be estimated for the model are GARCH model parameters, 
besides which no other assumptions are made. Unfortunately, intellectual effort in 
implementing HHS model is quite high as well as the computational time, but with 
the development of faster computer processors and greater investment in education, 
this should present a minor problem. The main characteristics, underlying logic and 
main advantages of HHS model are validated by all of the performed tests, 
individual as well as the overall ranking results. All of the tests and rankings clearly 
show that HHS model managed to incorporate the best characteristics of parametric 

Distribution normal normal normal actual quasi-actual assumed assumed quasi-actual

Tails normal normal fat actual quasi-actual assumed assumed quasi-actual

Reaction speed slow fast fast slow medium medium fast fast

Intellectual effort low moderate moderate very low moderate high high high

Model risk huge huge moderate moderate low high high low

Computation time low low moderate low moderate high high high

Communicability easy easy moderate easy moderate moderate difficult moderate

HHS
Historical 

simulation
BRW

Monte 

Carlo

EWMA 

Monte Carlo
Characteristics Normal VCV RiskMetrics

GARCH-

RiskMetrics
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and nonparametric approaches to calculating VaR and produced superior VaR 
estimates to all the other tested VaR models.  
 
This finding indicates that the Hybrid Historical simulation overcomes serious 
drawbacks of parametric and nonparametric approaches and provides superior 
Value at Risk forecasts than adequately capture market risk present in the capital 
markets of transition countries. 
 
Presented findings bear very important implications that have to be addressed by 
regulators and risk practitioners operating in transition countries. Risk managers 
have to start thinking outside the frames set by their parent companies or else their 
banks investing in these markets may find themselves in serious trouble, dealing 
with losses that they were not expecting. Contrary to the widespread opinion it is not 
enough to blindly implement the VaR models that are being offered by various 
software companies and financial institutions. Every VaR software package that a 
bank is thinking about implementing should be rigorously tested and analysed to see 
if it really provides a correct estimate of the true level of risk a bank is exposed to. 
National regulators have to take into consideration that simplistic VaR models that 
are widely used in some developed countries are not well suited for these illiquid 
and developing financial markets. Before allowance is given to banks on using 
internal VaR models that are either purchased or developed in-house, national 
regulators should rigorously checks and analyse the backtesting performance as well 
as the theoretical framework of such models for any inconsistencies and unwanted 
simplifications.  As the obtained results show, returns on stock indexes from 
transition countries are characterised by fat tails, asymmetry, autocorrelation and 
heteroskedasticity, all of which considerably complicate VaR estimation and require 
more complex, computationally and intellectually demanding VaR models, such as 
the HHS model. The obtained results from this research also indicate that it may be 
highly misleading to compare VaR numbers across financial institutions if the 
reported VaR figures are based on different VaR models. As was shown, VaR 
estimates for the same stock index according to two different VaR models differed 
by more than 77%. However, it has to be pointed out that while acknowledging all 
the flaws and inconsistencies of VaR concept as a risk measure, VaR is an extremely 
useful tool for financial institutions with regard to their in-house risk management. 
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